K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2021

Gọi đa thức dư là \(ax^2+bx+c\) (do số chia bậc 3 nên thương bậc 2 trở xuống)

\(\Leftrightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\cdot c\left(x\right)+ax^2+bx+c\\ \Leftrightarrow\left\{{}\begin{matrix}P\left(1\right)=a+b+c=2\\P\left(2\right)=4a+2b+c=3\\P\left(3\right)=9a+3b+c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{1}{2}\\c=2\end{matrix}\right.\)

Vậy đa thức cần tìm là \(\dfrac{1}{2}x^2-\dfrac{1}{2}x+2\)

1: \(=\dfrac{4\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{3\left(x+1\right)}{-20\left(x-1\right)}=\dfrac{-12}{20}\cdot\dfrac{1}{x+1}=\dfrac{-3}{5x+5}\)

2: \(=\dfrac{x^2-xy+y^2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\dfrac{x-y}{\left(x+y\right)^2}\)

3: \(=\dfrac{1-4x^2-1}{1-2x}:\dfrac{4x^2-2x-4x^2}{2x-1}\)

\(=\dfrac{4x^2}{2x-1}\cdot\dfrac{2x-1}{-2x}\)

=-2x

1: Sửa đề: Qua N kẻ đường song song với PC cắt AB tại F

Xét tứ giác CNFP có NF//PC

nên CNFP là hình thang

3:

1: \(A=\dfrac{x\left(x^2+3\right)-\left(x^2+3\right)}{x^3\left(x+3\right)+3\left(x+3\right)}=\dfrac{\left(x^2+3\right)\left(x-1\right)}{\left(x+3\right)\left(x^2+3\right)}\)

\(=\dfrac{x-1}{x+3}\)

2: A=-1

=>x-1=-x-3

=>2x=-2

=>x=-1(nhận)

3: Khi x=-2 thì \(A=\dfrac{-2-1}{-2+3}=-3\)

12 tháng 7 2023

1

Với \(\left\{{}\begin{matrix}x\ne2\\x\ne-1\\x\ne\sqrt{\dfrac{1}{2}}\end{matrix}\right.\)

\(M=\left(\dfrac{x-1}{2-x}-\dfrac{x^2}{x^2-x-2}\right)\left(\dfrac{x^2+2x+1}{4x^4-4x^2+1}\right)\\ =\left(\dfrac{\left(x-1\right)\left(x+1\right)}{\left(2-x\right)\left(x+1\right)}+\dfrac{x^2}{\left(x+1\right)\left(2-x\right)}\right)\left(\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\right)\\ =\dfrac{x^2-1+x^2}{\left(x+1\right)\left(2-x\right)}\left(\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\right)\\ =\dfrac{\left(2x^2-1\right)\left(x+1\right)^2}{\left(x+1\right)\left(2-x\right)\left(2x^2-1\right)^2}\\ =\dfrac{x+1}{\left(2-x\right)\left(2x^2-1\right)}\)

2

Để M = 0 thì \(\dfrac{x+1}{\left(2-x\right)\left(2x^2-1\right)}=0\Rightarrow x+1=0\Rightarrow x=-1\) (loại)

Vậy không có giá trị x thỏa mãn M = 0

12 tháng 7 2023

1) \(M=\left(\dfrac{x-1}{2-x}-\dfrac{x^2}{x^2-x-2}\right)\cdot\dfrac{x^2+2x+1}{4x^4-4x^2+1}\) (ĐK: \(\left\{{}\begin{matrix}x\ne2\\x\ne-1\\x\ne\sqrt{\dfrac{1}{2}}\end{matrix}\right.\))

\(M=\left(\dfrac{-\left(x-1\right)}{x-2}-\dfrac{x^2}{\left(x-2\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\)

\(M=\left(\dfrac{-\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\)

\(M=\left(\dfrac{-\left(x^2-1\right)-x^2}{\left(x-2\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\)

\(M=\left(\dfrac{-x^2+1-x^2}{\left(x-2\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\)

\(M=\dfrac{-2x^2+1}{\left(x-2\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{\left(2x^2-1\right)^2}\)

\(M=\dfrac{-\left(2x^2-1\right)\left(x+1\right)^2}{\left(x-2\right)\left(x+1\right)\left(2x^2-1\right)^2}\)

\(M=\dfrac{-\left(x+1\right)}{\left(x-2\right)\left(2x^2-1\right)}\)

2) Ta có: \(M=0\)

\(\Rightarrow\dfrac{-\left(x+1\right)}{\left(x-2\right)\left(2x^2-1\right)}=0\)

\(\Leftrightarrow-\left(x+1\right)=0\)

\(\Leftrightarrow-x=1\)

\(\Leftrightarrow x=-1\left(ktm\right)\)

1: AD=8-2=6cm

AD/AB=6/8=3/4

AE/AC=9/12=3/4

=>AD/AB=AE/AC

2: Xét ΔADE và ΔABC có

AD/AB=AE/AC
góc A chung

=>ΔADE đồng dạng với ΔABC

3: AI là phân giác

=>IB/IC=AB/AC

=>IB/IC=AD/AE

=>IB*AE=AD*IC

NV
7 tháng 11 2021

\(A=2n^2\left(2n-1\right)-3\left(2n-1\right)+2=\left(2n^2-3\right)\left(2n-1\right)+2\)

Do \(\left(2n^2-3\right)\left(2n-1\right)⋮2n-1\)

\(\Rightarrow2⋮2n-1\)

\(\Rightarrow2n-1=Ư\left(2\right)\)

Mà 2n-1 luôn lẻ \(\Rightarrow2n-1=\left\{-1;1\right\}\)

\(\Rightarrow n=\left\{0;1\right\}\)

2.

\(Q=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+7\)

\(Q=-\left(x+2\right)^2-\left(y-1\right)^2+7\le7\)

\(Q_{max}=7\) khi \(\left(x;y\right)=\left(-2;1\right)\)

20 tháng 11 2021

11)\(x^3+8x^2+5x+a=x\left(x^2+3x+b\right)+5\left(x^2+3x+b\right)-bx-10x+5b+a=\left(x^2+3x+b\right)\left(x+5\right)-bx-10x+5b+a⋮\left(x^2+3x+b\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-bx-10x=0\\5b+a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-10\\a=50\end{matrix}\right.\)

 

2 tháng 7 2023

Bài `1`

\(a,A=a\left(a+b\right)-b\left(a+b\right)\\ =\left(a+b\right)\left(a-b\right)\)

Với `a=9;=10`

Ta có :

 \(\left(a+b\right)\left(a-b\right)\\=\left(9+10\right)\left(9-10\right)\\ =19.\left(-1\right)\\ =-19\)

\(b,B=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x+2\right)\left(3x-2\right)\\ =\left(3x+2\right)^2-2\left(3x+2\right)\left(3x-2\right)+\left(3x-2\right)^2\\ =\left[\left(3x+2\right)-\left(3x-2\right)\right]^2\)

Với `x=-4`

Ta có :

\(\left[\left(3x+2\right)-\left(3x-2\right)\right]^2\\ =\left(3.4+2-3.4+2\right)^2\\ =\left(12+2-12+2\right)^2\\ =4^2\\ =16\)

\(2,\\ x^3-6x^2+9x\\ =x\left(x^2-6x+9\right)\\ =x\left(x-3\right)^2\\ x^2-2x-4y^2-4y\\ \)

`->` có đúng đề ko cậu

 

2:

b; x^2-4y^2-2x-4y

=(x-2y)*(x+2y)-2(x+2y)

=(x+2y)(x-2y-2)

a: x^3-6x^2+9x

=x(x^2-6x+9)

=x(x-3)^2