Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(5x\cdot\left(x-\frac{1}{3}\right)=0\)
Chia làm 2 TH :
TH 1: \(5x=0\Rightarrow x=0\)
TH 2:\(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)
\(\Rightarrow x\in\left\{0;\frac{1}{3}\right\}\)
b/\(\left(x+\frac{1}{4}\right)\cdot\left(x-\frac{3}{7}\right)=0\)
Chia làm 2 Th
Th1 : \(x+\frac{1}{4}=0\Rightarrow x=-\frac{1}{4}\)
Th2 :\(x-\frac{3}{7}=0\Rightarrow x=\frac{3}{7}\)
\(\Rightarrow x\in\left\{-\frac{1}{4};\frac{3}{7}\right\}\)
1) \(5x\left(x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x=0\\x-\frac{1}{3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
2) \(\left(x+\frac{1}{4}\right)\left(x-\frac{3}{7}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=0\\x-\frac{3}{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{3}{7}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{3}{7}\end{cases}}\)
e,
\(2^x-15=17\\ 2^x=17+15\\ 2^x=32\\ 2^x=2^5\\ x=5\)
Vậy \(x=5\)
d,
\(\left(x-1\right)^5-\left(x-1\right)^2=0\\ \left(x-1\right)^2\cdot\left[\left(x-1\right)^3-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-1\right)^3-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^3=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\\left(x-1\right)^3=1^3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=2\)
mấy câu còn lại coi lại đề
\(b)\left(x-3\right)^3=125^2\)
\(\Rightarrow\left(x-3\right)^3=5^{3^2}\)
\(\Rightarrow\left(x-3\right)^3=25^3\)
\(\Rightarrow x-3=25\)
\(\Rightarrow x=28\)
1. a, 3x + |x - 2| = 8
<=> |x - 2| = 8 - 3x
Xét 2 TH :
TH1: x - 2 = 8 - 3x
<=> x + 3x = 8 + 2
<=> 4x = 10
<=> x = \(\dfrac{5}{2}\) (thỏa mãn)
TH2: x - 2 = -(8 - 3x)
<=> x - 2 = -8 + 3x
<=> -2 + 8 = 3x - x
<=> 6 = 2x
<=> x = 3 (thỏa mãn)
b, 5 - |x - 1| = 4
<=> |x - 1| = 1
<=> \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\) (thỏa mãn)
@Nguyễn Hoàng Vũ
2. 5.(x - 2) - 4.(1 - 3x) = |3 - 7| + 2.(1 + 2x)
<=> 5x - 10 - 4 + 12x = 4 + 2 + 4x
<=> 17x - 14 = 6 + 4x
<=> 17x - 4x = 6 + 14
<=> 13x = 20
<=> x = \(\dfrac{20}{13}\) (thỏa mãn)
@Nguyễn Hoàng Vũ
1,
để A thuộc Z thì
x+5 chia het cho x+3
co x+3 chia het cho x+3
=>(x+5)-(x+3)chia het cho x+3
hay2 chia het cho x+3
=>x+3 thuộc ước của 2
=>x+3 thuoc {1,-1,2,-2}
ta co bang
x+3 | 1 | -1 | 2 | -2 |
x | -2 | -4 | -1 | -5 |
vay de A thuoc Z thi x thuoc {-2,-4,-1,-2}
Bài 1:
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right):\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
\(=\left(-\dfrac{9}{5}-\dfrac{12}{5}-\dfrac{7}{3}\right):\left(\dfrac{9}{20}-\dfrac{5}{12}+-3\right)\)
\(=\left(-\dfrac{27}{15}-\dfrac{36}{15}-\dfrac{21}{15}\right):\left(\dfrac{27}{60}-\dfrac{25}{60}+-3\right)\)
\(=\left(-\dfrac{28}{5}\right):\left(-\dfrac{89}{30}\right)\)
\(=\left(-\dfrac{28}{5}\right).\left(-\dfrac{30}{89}\right)\)
\(=\dfrac{168}{89}\)
4a) \(\frac{-2}{3}x=\frac{3}{10}-\frac{1}{5}=\frac{1}{10}\)
\(\Leftrightarrow x=\frac{1}{10}:\frac{-2}{3}=\frac{1}{10}.\frac{3}{-2}=\frac{3}{-20}\)
Vậy x=\(\frac{3}{-20}\)
b) \(\frac{2}{3}x-\frac{3}{2}x=\frac{5}{12}\)
\(\Leftrightarrow\left(\frac{2}{3}-\frac{3}{2}\right)x=\frac{5}{12}\)
\(\Leftrightarrow\frac{-5}{6}x=\frac{5}{12}\)
\(\Leftrightarrow x=\frac{5}{12}:\frac{-5}{6}=\frac{5}{12}.\frac{6}{-5}=\frac{1}{-2}\)
Vậy x=\(\frac{1}{-2}\)
g)Sửa đề: \(\left|4x-1\right|=\left(-3\right)^2\)
\(\Leftrightarrow\left|4x-1\right|=9\)
\(\Rightarrow\left[{}\begin{matrix}4x-1=9\\4x-1=\left(-9\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5}{2};-2\right\}\)
i) \(\left(x-1^3\right)=125\)
\(\Leftrightarrow x-1=125\)
\(\Leftrightarrow x=125+1=126\)
Vậy x=126
k) \(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)