\(\frac{3x^2+9x-3}{x^2+x-2}-\frac{x+1}{x+2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(=\frac{3x^2+9x-3}{x^2+x-2}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)

\(=\frac{3x^2+9x-3}{\left(x+2\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

\(=\frac{3x^2+9x-3-\left(x^2-1\right)-\left(x^2-4\right)}{\left(x-1\right)\left(x+2\right)}\)

\(=\frac{3x^2+9x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)

\(=\frac{x^2+9x+2}{\left(x-1\right)\left(x+2\right)}\)

17 tháng 7 2017

hi bn 

bn ghi sai đề

12 tháng 9 2016

a) \(\frac{x^2+5x+6}{x^2+7x+12}\)=\(\frac{x^2+2x+3x+6}{x^2+3x+4x+12}\)=\(\frac{x\left(x+2\right)+3\left(x+2\right)}{x\left(x+3\right)+4\left(x+3\right)}\)=\(\frac{\left(x+3\right)\left(x+2\right)}{\left(x+4\right)\left(x+3\right)}\)

b) \(\frac{7x^2+14x+7}{3x^2+3x}\)=\(\frac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)=\(\frac{7\left(x+1\right)^2}{3x\left(x+1\right)}\)=\(\frac{7\left(x+1\right)\left(x+1\right)}{3x\left(x+1\right)}\)=\(\frac{7\left(x+1\right)}{3x}\)

29 tháng 11 2019

Làm ngắn gọn thôi nhé :v

\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)

\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)

\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)

\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)

\(A=\frac{x+2}{x-3}\)

\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)

\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)

\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{x+2}{x-2}\)

\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{10x}{-x^2+9}\)

\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)

\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)

\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)

\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)

\(D=\frac{51x-15}{2x^3-18x}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)

\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)

\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(E=\frac{10x^2+10}{x^4-2x+1}\)

13 tháng 9 2016

a) \(\frac{x^2-xy-x+y}{x^2+xy-x-y}\)=\(\frac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}\)=\(\frac{\left(x-1\right)\left(x-y\right)}{\left(x-1\right)\left(x+y\right)}\)=\(\frac{x-y}{x+y}\)

b) \(\frac{x^2-xy}{5y^2-5xy}\)=\(\frac{x\left(x-y\right)}{-5y\left(x-y\right)}\)=\(\frac{-x}{5y}\)

c) \(\frac{3x^2-12x+12}{x^4-8x}\)=\(\frac{3\left(x^2-4x+4\right)}{x\left(x^3-2^3\right)}\)=\(\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}\)=\(\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

11 tháng 12 2016

Không chép lại đề nhé:

\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)

\(=\frac{x+3}{x-3}\)

11 tháng 12 2016

b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)

c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)

Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay

(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)

Thế vào sẽ tìm được A

ĐKXĐ thì b tự làm nhé 

12 tháng 1 2019

\(A=\frac{1-x^2}{x}.\left(\frac{x^2}{x+3}-1\right)+\frac{3x^2-14x+3}{x^2+3x}\)

\(A=\frac{\left(x^2-x-3\right)\left(-x^2+1\right)}{x\left(x+3\right)}+\frac{3x^2-14x+3}{x^2+3x}\)

\(A=\frac{\left(x^2-x-3\right)\left(1-x^3\right)}{\left(x+3\right)x}+\frac{3x^2-14x+3}{x\left(x+3\right)}\)

\(A=\frac{\left(x^2-x-3\right)\left(1-x^2\right)+3x^2-14x+3}{\left(x+3\right)x}\)

\(A=\frac{-x^4+x^3+7x^2-15x}{x\left(x+3\right)}\)

\(A=\frac{x\left(-x^3+x^2+7x-15\right)}{x\left(x+3\right)}\)

\(A=\frac{-x^3+x^2+7x-15}{x+3}\)

\(A=-\frac{\left(x+3\right)\left(x^2-4x+5\right)}{x+3}\)

\(A=-\left(x^2-4x+5\right)\)

\(A=-x^2+4x-5\)

Trình độ hơi thấp, có gì sai sót xin bỏ qua cho :)

12 tháng 1 2019

umk cảm ơn bạn trước nhé

5 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)