Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thể tích của hình trụ là: \(V=S.h=m^2\pi h\).
Thể tích của hình nón là: \(V=\dfrac{1}{3}S.h=\dfrac{1}{3}m^2\pi h\).
Do đó độ cao trong hình trụ là \(\dfrac{1}{3}h\).
Phương pháp giải bất đẳng thức và cực trị ( dành cho học sinh 8,9) của Nguyễn Văn Dũng-Võ quốc bá cẩn-Trần quốc anh
Nhà xuất bản Đại học quốc gia Hà Nội
quyển màu xanh lá cây bên trên có viền vàng bạn nha! quyển này hay lắm!
Bạn thi HSG cấp tỉnh à?
Coi số lớn là 2 phần và 31 đơn vị và số bé là 1 phần :
Số lớn là : ( 367 - 31) : ( 1 + 2 ) x 2 + 31 = 255
Số bé là : 367 - 255 = 112
Đây nè :
y=x^3+3x^2+1=(x+1)^3-3x <=>
y-3=(x+1)^3-3x-3 hay
y-3 = (x+1)^3 - 3(x+1) (*)
Nhìn vào (*) ta thấy rằng nếu chọn hệ trục tọa độ mới IXY với gốc tọa độ tại I(-1;3)
Khi đó X=x+1, Y=y-3 và hàm số trở thành Y=X^3 - 3X là hàm lẻ, đồ thị của nó (cũng chính là đồ thị hàm đã cho trong hệ tọa độ cũ) nhận I là tâm đối xứng.
Vậy tâm đối xứng của đồ thị hs đã cho là I(-1;3)
Nếu bạn đã học khảo sát hàm số bằng đạo hàm thì có cách này đơn giản hơn nhiều :
y'=3x^2+6x (nghiệm của y'=0 là hoành độ các cực trị, nhưng ta không quan tâm)
y''=6x+6 (nghiệm của y''=0 chính là hoành độ điểm uốn, cũng là tâm đối xứng)
y''=6x+6=0=>x= -1=>y=3
ĐKXĐ: \(-5\le x\le3\)
Đặt \(\sqrt{x+5}+\sqrt{3-x}=t>0\Rightarrow t^2=8+2\sqrt{-x^2-2x+15}\)
\(\Rightarrow-2\sqrt{-x^2-2x+15}=8-t^2\) (1)
Pt trở thành:
\(t+8-t^2-2=0\Leftrightarrow-t^2+t+6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(loại\right)\end{matrix}\right.\)
Thế vào (1): \(-2\sqrt{-x^2-2x+15}=-1\)
\(\Leftrightarrow\sqrt{-x^2-2x+15}=\dfrac{1}{2}\)
\(\Leftrightarrow-x^2-2x+15=\dfrac{1}{4}\)
\(\Leftrightarrow...\)
\(4x^2-9=5x+6\sqrt{x+1}\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow4x^2-5x-9=6\sqrt{x+1}\)
\(\Leftrightarrow4x^2+4x-9x-9=6\sqrt{x+1}\)
\(\Leftrightarrow4x\left(x+1\right)-9\left(x+1\right)=6\sqrt{x+1}\)
\(\Leftrightarrow\left(x+1\right)\left(4x-9\right)-6\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x+1}\left[\left(4x-9\right)\sqrt{x+1}-6\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\\\left(4x-9\right)\sqrt{x+1}=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\left(16x^2-72x+81\right)\left(x+1\right)=36\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\16x^3-56x^2+9x-45=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\\left(x-3\right)\left(4x-5\right)\left(4x+3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\x=3\left(tm\right)\\x=\dfrac{5}{4}\left(tm\right)\\x=-\dfrac{3}{4}\left(tm\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-1;3;\dfrac{5}{4};-\dfrac{3}{4}\right\}\)
49, \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+6\sqrt{2}+2}-\sqrt{9-6\sqrt{2}+2}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|=2\sqrt{2}\)
50, \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}=\sqrt{2+2\sqrt{2}+1}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\left|\sqrt{2}+1\right|+\left|2-\sqrt{2}\right|=3\)
51, \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{5-2\sqrt{5}\sqrt{3}+3}-\sqrt{5-2\sqrt{5}\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\left|\sqrt{5}-\sqrt{3}\right|-\left|\sqrt{5}-\sqrt{3}\right|=-2\sqrt{3}\)
52, \(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}=\left|\sqrt{2}+1\right|-\left|2-\sqrt{2}\right|=-1\)