K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)

\(\ge\frac{9}{a^2+b^2+c^2+2ab+2bc+2ca}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)

\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=9+\frac{7}{\frac{1}{3}}=30\)

30 tháng 12 2021

Theo bất đẳng thức Cauchy dạng phân thức

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}>\frac{9}{ab+bc+ac}.\)

\(VT>\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ac}\)

\(VT>\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{7}{ab+bc+ac}\)

Theo hệ quả của bất đẳng thức Cauchy 

\(ab+bc+ac< \frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)

\(\frac{7}{ab+bc+ac>21}\left(1\right)\)

Theo bất đẳng thức Cauchy dạng phân thức

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}>\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

Từ (1) và (2)

\(VT>21+9=30\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=\frac{1}{3}\)