Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho số hữu tỉ a/b khác 0. Chứng minh rằng: a/b là số hữu tỉ dương nếu a và b cùng dấu.
Xét số hữu tỉ a/b, có thể coi b > 0.
Nếu a, b cùng dấu thì a > 0 và b > 0.
Suy ra (a/b) > (0/b) = 0 tức là a/b dương.
Xét số hữu tỉ a/b, có thể coi b > 0.
Nếu a, b khác dấu thì a < 0 và b > 0.
Suy ra (a/b) < (0/b) = 0 tức là a/b âm.
a: \(y=k_1\cdot x\)
\(x=k_2\cdot z\)
\(\Leftrightarrow k_2\cdot z=\dfrac{y}{k_1}\)
\(\Leftrightarrow y=z\cdot k_1\cdot k_2\)
Vậy: Hệ số tỉ lệ là \(k=k_1\cdot k_2\)
b: Vì x tỉ lệ thuận với y theo hệ số tỉ lệ 0,4
và y tỉ lệ thuận với z theo hệ số tỉ lệ 6
nên x tỉ lệ thuận với z theo hệ số tỉ lệ 2,4
=>x=2,4z
Khi z=5 thì x=12
Khi z=-1/3 thì x=-0,8
Khi z=3/5 thì x=1,44
a) Chứng minh phản chứng: Giả sử tổng đó là số hữu tỉ
=> Số hạng vô tỉ = Số hữu tỉ - Số hữu tỉ => Số vô tỉ = Số hữu tỉ => Mâu thuẫn
Vậy tổgg só là số vô tỉ
a)
Khi a, b cùng dấu:
\(\Rightarrow\dfrac{a}{b}\ge0\) (Luôn luôn nhận giá trị không âm)
b)
Khi a, b khác dấu:
\(\Rightarrow\dfrac{a}{b}< 0\) (Luôn luôn nhận giá trị âm)
P/s: Đề phải là thế này nhé:
Cho số hữu tỉ abab ( a;b∈Z∈Z;b≠0≠0).
So sánh ababvới 0 khi
a) a, b cùng dấu.
b) a, b khác dấu.
Chúc bạn học tốt!
a ) khi a , b cùng dấu thì :
\(\dfrac{a}{b}\) \(\ge\) 0 ( vì luôn nhận giá trị dương hoặc = 0 )
b ) khi a , b khác dấu thì :
\(\dfrac{a}{b}\) \(\le\) 0 ( vì luôn nhận giá trị âm hoặc = 0 )
+ Nếu a và b cùng dấu thì a/b dương => a/b > 0
+ Nếu a và b khác dấu thì a/b âm => a/b < 0