
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)27n:3n=9
(27:3)n=9
9n=91
n=1
Vậy n=1
b)\(\left(\frac{25}{5}\right)^n=5\)
\(5^n=5^1\)
n=1
Vạy n=1
c)\(\left(-\frac{81}{3}\right)^n=-243\)
\(\left(-27\right)^n=\left(-3\right)^5\)
\(\left[\left(-3\right)^3\right]^n=\left(-3\right)^5\)
\(\left(-3\right)^{3n}=\left(-3\right)^5\)
\(3n=5\)
\(n=\frac{5}{3}\)
Vậy \(n=\frac{5}{3}\)
d)\(\frac{1}{2}.2^n+4.2^n=9.5^n\)
\(2^n.\left(\frac{1}{2}+4\right)=9.5^n\)
\(2^n.\frac{9}{2}=3^2.5^n\)

a) \(\frac{-5}{8}\cdot\frac{11}{3}+\frac{-5}{8}\cdot\frac{1}{3}=-\frac{5}{8}\left(\frac{11}{3}+\frac{1}{3}\right)=-\frac{5}{8}\cdot4=-\frac{5}{2}\cdot1=-\frac{5}{2}\)
b) \(\frac{2}{3}+\frac{3}{4}\cdot\frac{9}{5}=\frac{2}{3}+\frac{27}{20}=\frac{121}{60}\)
c) Tương tự câu a
d) \(\frac{1}{7}\cdot\frac{3}{8}+\frac{1}{7}\cdot\frac{5}{8}=\frac{1}{7}\left(\frac{3}{8}+\frac{5}{8}\right)=\frac{1}{7}\cdot1=\frac{1}{7}\)
\(a,\frac{-5}{8}.\frac{11}{3}+\frac{-5}{8}.\frac{1}{3}\)
\(=\frac{-5}{8}\left(\frac{11}{3}+\frac{1}{3}\right)\)
\(=\frac{-5}{8}.4\)
\(=\frac{-5}{2}\)
\(b,\frac{2}{3}+\frac{3}{4}.\frac{9}{5}\)
\(=\frac{2}{3}+\frac{27}{20}\)
\(=\frac{40}{60}+\frac{81}{60}\)
\(=\frac{121}{60}\)
\(c,\frac{-5}{7}.\frac{4}{9}-\frac{5}{9}.\frac{5}{7}\)
\(=\frac{-5}{7}\left(\frac{4}{9}+\frac{5}{9}\right)\)
\(=\frac{-5}{7}.1\)
\(=\frac{-5}{7}\)
\(d,\frac{1}{7}.\frac{3}{8}+\frac{1}{7}.\frac{5}{8}\)
\(=\frac{1}{7}\left(\frac{3}{8}+\frac{5}{8}\right)\)
\(=\frac{1}{7}.1\)
\(=\frac{1}{7}\)
Học tốt

\(\frac{3^{17}\cdot81^{11}}{27^{10}\cdot9^{15}}\)
\(=\frac{3^{17}\cdot\left(3^4\right)^{11}}{\left(3^3\right)^{10}\cdot\left(3^2\right)^{15}}\)
\(=\frac{3^{17}\cdot3^{44}}{3^{30}\cdot3^{30}}\)
\(=\frac{3^{61}}{3^{60}}\)
\(=3\)
\(\frac{9^2\cdot2^{11}}{16^2\cdot6^3}\)
\(=\frac{\left(3^2\right)^2\cdot2^{11}}{\left(2^4\right)^2\cdot\left(2\cdot3\right)^3}\)
\(=\frac{3^4\cdot2^{11}}{2^8\cdot2^3\cdot3^3}\)
\(=\frac{3^4\cdot2^{11}}{2^{11}\cdot3^3}\)
\(=\frac{3^4}{3^3}\)
\(=3\)

a) \(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}=\frac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{17}.3^{44}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=3\)
b) \(\frac{9^2.2^{11}}{16^2.6^3}=\frac{\left(3^2\right)^2.2^{11}}{\left(2^4\right)^2.2^3.3^3}=\frac{3^4.2^{11}}{2^8.2^3.3^3}=\frac{3^4.2^{11}}{2^{11}.3^3}=3\)
c) \(\frac{2^{10}.3^{31}+2^{40}.3^6}{2^{11}.3^{31}+2^{41}.3^6}=\frac{2^{10}.3^{31}+2^{40}.3^6}{2.\left(2^{10}.3^{31}+2^{40}.3^6\right)}=\frac{1}{2}\)

1.
b) \(3^x+3^{x+2}=2430\)
\(\Rightarrow3^x.1+3^x.3^2=2430\)
\(\Rightarrow3^x.\left(1+3^2\right)=2430\)
\(\Rightarrow3^x.10=2430\)
\(\Rightarrow3^x=2430:10\)
\(\Rightarrow3^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
c) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=15\\2x-15=\pm1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=15:2\\2x-15=1\\2x-15=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{15}{2}\\2x=16\\2x=14\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{15}{2}\\x=8\\x=7\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{15}{2};8;7\right\}.\)
Chúc bạn học tốt!
\(A=\frac{31}{27}-\frac{3}{405.401}-\frac{3}{401.397}-...-\frac{3}{9.5}\)
\(B=\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{397.401}+\frac{3}{401.405}\)
\(B=\frac{3}{4}\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{397.401}+\frac{4}{401.405}\right)\)
\(B=\frac{3}{4}\left(\frac{9-5}{5.9}+\frac{13-9}{9.13}+...+\frac{401-397}{397.401}+\frac{405-401}{401.405}\right)\)
\(B=\frac{3}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{397}-\frac{1}{401}+\frac{1}{401}-\frac{1}{405}\right)\)
\(B=\frac{3}{4}\left(\frac{1}{5}-\frac{1}{405}\right)=\frac{4}{27}\)
\(A=\frac{31}{27}-B=\frac{31}{27}-\frac{4}{27}=1\)