Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}:\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}\)
=\(\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}.\dfrac{5}{1}+\dfrac{3}{5}.\dfrac{1}{3}\)
=\(\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{3}+\dfrac{3}{5}.\dfrac{1}{3}\)
=\(\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{1}{3}.2+\dfrac{3}{5}.\dfrac{1}{3}\)
=\(\dfrac{1}{3}.\left(\dfrac{2}{5}+\dfrac{3}{5}-2\right)\)=\(\dfrac{1}{3}.\left(-1\right)=\dfrac{-1}{3}\)
d: =-2/7-3/11+2/7=-3/11
e: =2+3/7+1+4/7-17/7
=4-17/7=11/7
f: =-2/3*4/5+1/5*11/9
=-8/15+11/45
=-24/45+11/45=-13/45
h: =(-3,1+3,7):0,2=0,6:0,2=3
mình làm 2004.2004+2004+1002/(2004+1)(2004+1)-100... = 2004.2004+2004+1002/
2004.2004+2004+2004+1-1003 =
2004.2004+2004+1002/2004.2004+2004+1002
=1
a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)
b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)
a) \(A=\dfrac{3}{5}+6\dfrac{5}{6}+\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}\left(11\dfrac{1}{4}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}.2.\dfrac{3}{25}\)
\(=\dfrac{3}{5}+\dfrac{41}{25}\)
\(=\dfrac{15}{25}+\dfrac{41}{25}\)
\(=\dfrac{56}{25}\)
a) A = \(\dfrac{3}{5}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
A = \(\dfrac{3}{5}+\dfrac{41}{6}\) \(\left(\dfrac{45}{4}-\dfrac{37}{4}\right)\) : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}+\dfrac{41}{6}\) . 2 : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}\) + \(\dfrac{41}{3}\) : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}\) + \(\dfrac{41}{25}\)
A = \(\dfrac{56}{25}\)
f: \(=\dfrac{7}{19}\left(\dfrac{8}{11}+\dfrac{3}{11}\right)-\dfrac{12}{19}=\dfrac{7}{19}-\dfrac{12}{19}=\dfrac{-5}{19}\)
i: \(=\left(\dfrac{9}{24}-\dfrac{18}{24}+\dfrac{14}{24}\right)\cdot\dfrac{6}{5}+\dfrac{1}{2}=\dfrac{5}{24}\cdot\dfrac{6}{5}+\dfrac{1}{2}\)
=1/4+1/2=3/4
` 7/19 . 8/11 + 3/11 . 7/19 + (-12)/19 `
`= 7/19 . ( 8/11 + 3/11 ) + (-12)/19 `
`= 7/19 . 11/11 + (-12)/19`
`= 7/19 . 1 + (-12)/19 `
`= 7/19 + (-12)/19 `
`= -5/19 `
`( 3/8 + (-3)/4 + 7/12 ) : 5/6 + 1/2`
`= 3/8 + (-3)4 + 7/12 . 6/5 + 1/2`
`= ( 9+(-18) + 14)/24 . 6/5 + 1/2`
`= 5/24 . 6/5 + 1/2`
`= 1/4 + 1/2 `
`= 3/4`
Sửa đề:
\(A=\dfrac{2004.2006+3006}{2005.2005-1003}\)
\(A=\dfrac{2004.2005+2004+3006}{2005.2005-1003}\)
\(A=\dfrac{2004.2005+2004+3006}{2004.2005+2005-1003}\)
\(A=\dfrac{2004.2005+5010}{2004.2005+1002}\)
Trả lời :
\(\frac{2004.2004+3006}{2005.2005-1003}\)\(=\)\(\frac{4016016+3006}{4020025-1003}\)
\(=\)\(\frac{4019022}{4019022}\)
\(=\)\(1\)
\(A=\dfrac{1995.1994-1}{1993.1995+1994}=\dfrac{1995\left(1993+1\right)-1}{1993.1995+1994}=\dfrac{1995.1993+1995-1}{1993.1995+1994}=\dfrac{1995.1993+1994}{1995.1993-1994}=1\)\(B=\dfrac{2004.2004+3006}{2005.2005-1003}=\dfrac{2004.2004+2004.1+1002}{2005.2005-1003}=\dfrac{2004.2005+1002}{2005.2005-1003}=\dfrac{2004.2005+1002}{2004.2005+2005-1003}=\dfrac{2004.2005+1002}{2004.2005+1002}=1\)\(C=\dfrac{2010.2011-1}{2009.2011+2010}=\dfrac{2009.2011+2011-1}{2009.2011+2010}=\dfrac{2019.2011+2010}{2009.20011+2010}=1\)\(D=\dfrac{2014.2015-1}{2013.2015+2013}=\dfrac{2013.2015+2014-1}{2013.2015+2013}=\dfrac{2013.2015+2013}{2013.2015+2013}=1\)
Câu 1 nhầm đề nha bạn mình sửa:
\(\dfrac{1995.1994-1}{1993.1995+1994}\)
\(=\dfrac{1995.\left(1993+1\right)-1}{1993.1995+1994}\)
\(=\dfrac{1995.1993+1995-1}{1993.1995+1994}\)
\(=\dfrac{1993.1995+1994}{1993.1995+1994}\)
\(=1\)
Câu 2: \(\dfrac{2004.2004+3006}{2005.2005-1003}\)
\(=\dfrac{2004.2004+2004+1002}{\left(2004+1\right).\left(2004+1\right)-1003}\)
\(=\dfrac{2004.2004+2004+1002}{2004.2004+2004+1-1003}\)
\(=\dfrac{2004.2004+2004+1002}{2004.2004+2004+1002}\)
\(=1\)
Câu 3:\(\dfrac{2010.2011-1}{2009.2011+2010}\)
\(=\dfrac{\left(2009+1\right).2011-1}{2009.2011+2010}\)
\(=\dfrac{2009.2011+2011-1}{2009.2011+2010}\)
\(=\dfrac{2009.2011+2010}{2009.2011+2010}\)
= 1
Câu 4:Nhầm để, sửa:
\(\dfrac{2014.2015-1}{2013.2015+2014}\)
\(=\dfrac{\left(2013+1\right).2015-1}{2013.2015+2014}\)
\(=\dfrac{2013.2015+2015-1}{2013.2015+2014}\)
\(=\dfrac{2013.2015+2014}{2013.2015+2014}\)
\(=1\)