Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính tốc độ của vật trượt, ta sử dụng công thức:
v = sqrt(2 * g * h)
trong đó:
v là tốc độ của vật (m/s)g là lực trọng (m/s²)h là độ cao của vật từ đỉnh dốc xuống (m)Áp dụng công thức trên vào bài toán:
v = sqrt(2 * 10 * 30) = sqrt(6000) = 75 m/s
Kết quả:
Tốc độ của vật trượt (m/s) = 75 m/sTừ đây, ta có thể nhận thấy tốc độ của vật nặng 3 kg trượt không vận tốc ban đầu từ đỉnh một phẳng nghiêng dài 30 m mặt phẳng nghiêng một góc 30 độ so với phương ngang bỏ qua mọi ma sát và lực cản lấy g=10 m/s² là 75 m/s.
\(F_{ms}=\mu N=\mu.P.cos\alpha\)
\(\Leftrightarrow\mu=\dfrac{F_{ms}}{P.cos\alpha}=\dfrac{0,3P}{P.cos30^o}=\dfrac{\sqrt{3}}{5}\)
\(a=g\left(sin\alpha-\mu cos\alpha\right)=2\left(m\backslash s^2\right)\)
\(v^2-v_o^2=2as\)
\(\Leftrightarrow v=\sqrt{2as+v_o^2}=1\left(m\backslash s\right)\)
Tham khảo
Công của trọng lực chính bằng độ giảm thế năng
A=Wt1−Wt2=mgh−0=0,5.10.20=100 J
(coi mốc thế năng tại chân dốc)
Áp dụng định luật bảo toàn cơ năng ta có
W1=W2⇒Wt1=Wđ2=100 J
⇒v=2Wđ2m=2.1000,5=20 m/s
Chọn mốc thế năng tại B ( Hình 93).
Chuyển động không có ma sát nên: W A = W B
Cơ năng tại A:
Cơ năng tại B:
Suy ra
200g=0,2kg
các lực tác dụng lên vật khi ở trên mặt phẳng nghiêng
\(\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\)
chiếu lên trục Ox có phương song song với mặt phẳng nghiêng, chiều dương cùng chiều chuyển động
P.sin\(\alpha\)=m.a\(\Rightarrow\)a=5m/s2
vận tốc vật khi xuống tới chân dốc
v2-v02=2as\(\Rightarrow\)v=\(4\sqrt{5}\)m/s
khi xuống chân dốc trượt trên mặt phẳng ngang xuất hiện ma sát
các lực tác dụng lên vật lúc này
\(\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a'}\)
chiếu lên trục Ox có phương nằm ngang chiều dương cùng chiều chuyển động của vật
-Fms=m.a'\(\Rightarrow-\mu.N=m.a'\) (1)
chiếu lên trục Oy có phương thẳng đứng chiều dương hướng lên trên
N=P=m.g (2)
từ (1),(2)\(\Rightarrow\)a'=-2m/s2
thời gian vật chuyển động trên mặt phẳng đến khi dừng lại là (v1=0)
t=\(\dfrac{v_1-v}{a'}\)=\(2\sqrt{5}s\)
a)Xét tam giác vuông: \(cos\alpha=\dfrac{\sqrt{20^2-10^2}}{20}=\sqrt{3}\)
Độ biến thiên động năng:
\(\Delta A=W_{đC}-W_{đB}=\dfrac{1}{2}m\left(v_C^2-v_B^2\right)=\dfrac{1}{2}mv_C^2\)
Mà \(\Delta A=A_{ms}+A_N+A_P=F_{ms}\cdot s+A_P=-\mu mgscos\alpha+mgh\)
\(\Rightarrow\dfrac{1}{2}mv_C^2=-\mu mgscos\alpha+mgh\Rightarrow\dfrac{1}{2}\cdot1\cdot v_C^2=-0,1\cdot1\cdot10\cdot\sqrt{3}+1\cdot10\cdot10\)
\(\Rightarrow v_C=14,02\)m/s
b)Bảo toàn động lượng: \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p}\)
\(\Rightarrow m_1v_1+m_2v_2=\left(m_1+m_2\right)v\Rightarrow1\cdot0+1,5\cdot14,02=\left(1+1,5\right)v\)
\(\Rightarrow v=8,412\)m/s
Theo định luật ll Niu tơn:
\(\overrightarrow{P_x}+\overrightarrow{P_y}+\overrightarrow{N}=m\cdot a\)
\(Ox:P=P_x\cdot sin\alpha\Rightarrow m\cdot a=mg\cdot sin30^o\)
\(\Rightarrow a=g\cdot sin30^o=10\cdot sin30^o=5\)m/s2
Vận tốc vật tại chân dốc:
\(v^2-v_0^2=2aS\Rightarrow v=\sqrt{2aS}=\sqrt{2\cdot5\cdot10}=10\)m/s