\(\frac{1}{x+1}+\frac{2}{x-1}=\frac{1+xmũ2}{xmũ2-1}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

Bài 1:

a, \(\frac{1}{x+1}+\frac{2}{x-1}=\frac{1+x^2}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)

\(\Leftrightarrow\) \(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{1+x^2}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow\) x - 1 + 2(x + 1) = 1 + x2

\(\Leftrightarrow\) x - 1 + 2x + 2 - 1 - x2 = 0

\(\Leftrightarrow\) -x2 + 3x = 0

\(\Leftrightarrow\) x(3 - x) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐKXĐ\right)\\x=3\left(TMĐKXĐ\right)\end{matrix}\right.\)

Vậy S = {0; 3}

b, \(\frac{x-2}{x+2}-\frac{x}{x-2}=\frac{8}{x^2-4}\) (ĐKXĐ: x \(\ne\) \(\pm\) 2)

\(\Leftrightarrow\) \(\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{8}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow\) (x - 2)2 - x(x + 2) = 8

\(\Leftrightarrow\) (x - 2)2 - x(x + 2) - 8 = 0

\(\Leftrightarrow\) x2 - 4x + 4 - x2 - 2x - 8 = 0

\(\Leftrightarrow\) -6x - 4 = 0

\(\Leftrightarrow\) x = \(\frac{-2}{3}\) (TMĐKXĐ)

Vậy S = {\(\frac{-2}{3}\)}

c, \(\frac{1}{x}\) + \(\frac{2}{x-3}\) = \(\frac{1-5x}{x^2-3x}\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) 3)

\(\Leftrightarrow\) \(\frac{x-3}{x\left(x-3\right)}+\frac{2x}{x\left(x-3\right)}=\frac{1-5x}{x\left(x-3\right)}\)

\(\Rightarrow\) x - 3 + 2x = 1 - 5x

\(\Leftrightarrow\) 3x - 3 = 1 - 5x

\(\Leftrightarrow\) 3x + 5x = 1 + 3

\(\Leftrightarrow\) 8x = 4

\(\Leftrightarrow\) x = \(\frac{1}{2}\) (TMĐKXĐ)

Vậy S = {\(\frac{1}{2}\)}

Bài 2:

a, \(\frac{1}{x+2}=\frac{5}{2-x}+\frac{12+x}{x^2-4}\)

\(\Leftrightarrow\) \(\frac{1}{x+2}=\frac{-5}{x-2}+\frac{12+x}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\) \(\frac{x-2}{\left(x+2\right)\left(x-2\right)}=\frac{-5\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12+x}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow\) x - 2 = -5(x + 2) + 12 + x

\(\Leftrightarrow\) x - 2 = -5x - 10 + 12 + x

\(\Leftrightarrow\) x - 2 = -4x + 2

\(\Leftrightarrow\) x + 4x = 2 + 2

\(\Leftrightarrow\) 5x = 4

\(\Leftrightarrow\) x = \(\frac{4}{5}\)

Vậy S = {\(\frac{4}{5}\)}

Chúc bn học tốt!! (Phần b hình như không có gì thì phải)

21 tháng 4 2020

Bài 1:

1, \(\frac{2x-5}{x+5}=3\) (ĐKXĐ: x \(\ne\) -5)

\(\Leftrightarrow\) \(\frac{2x-5}{x+5}=\frac{3\left(x+5\right)}{x+5}\)

\(\Rightarrow\) 2x - 5 = 3(x + 5)

\(\Leftrightarrow\) 2x - 5 = 3x + 15

\(\Leftrightarrow\) 2x - 3x = 15 + 5

\(\Leftrightarrow\) -x = 20

\(\Leftrightarrow\) x = -20 (TMĐKXĐ)

Vậy S = {-20}

2, \(\frac{4}{x+1}=\frac{3}{x-2}\) (ĐKXĐ: x \(\ne\) -1; x \(\ne\) 2)

\(\Leftrightarrow\) \(\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\) 4(x - 2) = 3(x + 1)

\(\Leftrightarrow\) 4x - 8 = 3x + 3

\(\Leftrightarrow\) 4x - 3x = 3 + 8

\(\Leftrightarrow\) x = 11 (TMĐKXĐ)

Vậy S = {11}

3, \(\frac{5}{2x-3}=\frac{1}{x-4}\) (ĐKXĐ: x \(\ne\) \(\frac{3}{2}\); x \(\ne\) 4)

\(\Leftrightarrow\) \(\frac{5\left(x-4\right)}{\left(2x-3\right)\left(x-4\right)}=\frac{2x-3}{\left(2x-3\right)\left(x-4\right)}\)

\(\Rightarrow\) 5(x - 4) = 2x - 3

\(\Leftrightarrow\) 5x - 20 = 2x - 3

\(\Leftrightarrow\) 5x - 2x = -3 + 20

\(\Leftrightarrow\) 3x = 17

\(\Leftrightarrow\) x = \(\frac{17}{3}\) (TMĐKXĐ)

Vậy S = {\(\frac{17}{3}\)}

Bài 2:

1, \(\frac{1}{x-1}+\frac{2}{x+1}=\frac{5x-3}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)

\(\Leftrightarrow\) \(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{5x-3}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow\) x + 1 + 2(x - 1) = 5x - 3

\(\Leftrightarrow\) x + 1 + 2x - 2 = 5x - 3

\(\Leftrightarrow\) 3x - 1 = 5x - 3

\(\Leftrightarrow\) 3x - 5x = -3 + 1

\(\Leftrightarrow\) -2x = -2

\(\Leftrightarrow\) x = 1 (KTM)

\(\Rightarrow\) Pt vô nghiệm

Vậy S = \(\varnothing\)

2, \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\) (ĐKXĐ: x \(\ne\) 2; x \(\ne\) 0)

\(\Leftrightarrow\) \(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Rightarrow\) x(x + 2) - x + 2 = 2

\(\Leftrightarrow\) x2 + 2x - x + 2 = 2

\(\Leftrightarrow\) x2 + x = 2 - 2

\(\Leftrightarrow\) x2 + x = 0

\(\Leftrightarrow\) x(x + 1) = 0

\(\Leftrightarrow\) x = 0 hoặc x + 1 = 0

\(\Leftrightarrow\) x = 0 và x = -1

Ta có: x = 0 KTM đkxđ

\(\Rightarrow\) x = -1

Vậy S = {-1}

3, \(\frac{5}{x-3}-\frac{3}{x+3}=\frac{3x}{x^2-9}\) (ĐKXĐ: x \(\ne\) \(\pm\) 3)

\(\Leftrightarrow\) \(\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3x}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow\) 5(x + 3) - 3(x - 3) = 3x

\(\Leftrightarrow\) 5x + 15 - 3x + 9 = 3x

\(\Leftrightarrow\) 2x + 24 = 3x

\(\Leftrightarrow\) 2x - 3x = 24

\(\Leftrightarrow\) -x = 24

\(\Leftrightarrow\) x = -24 (TMĐKXĐ)

Vậy S = {-24}

Chúc bn học tốt!!

Mình tính mãi vẫn có chỗ sai, mong bạn thông cảm!!

22 tháng 4 2020

Mình bt mình sai đâu r Garuda

câu 3 bài 3 cuối có cái đoạn 2x + 24 = 3x

\(\Leftrightarrow\) 2x - 3x = -24 (đoạn kia mình ghi là 24 nên quên không đổi dấu)

\(\Leftrightarrow\) -x = -24

\(\Leftrightarrow\) x = 24

Vậy S = {24}

(mình sửa lại rồi nha, chắc hết chỗ sai rồi)

22 tháng 4 2020

Bài làm

a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)

\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)

\(\Leftrightarrow6x+4=0\)

\(\Leftrightarrow x=-\frac{4}{6}\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy x = -2/3 là nghiệm.

23 tháng 4 2020

@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4

Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)

19 tháng 2 2020

Bài 3 :

Ta có : \(A=x^2+x+2012\)

=> \(A=x^2+x+\left(\frac{1}{2}\right)^2+\frac{8047}{4}\)

=> \(A=\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\)

- Ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\ge\frac{8047}{4}\forall x\)

- Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\)

<=> \(x=-\frac{1}{2}\)

Vậy MinA = \(\frac{8047}{4}\) <=> x = \(-\frac{1}{2}\) .

Bài 1 :

a, Ta có : \(\left(3x-2\right)\left(4+5x\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4+5x=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\5x=-4\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{4}{5}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(\frac{2}{3}\), x = \(-\frac{4}{5}\) .

b,- ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

=> \(x\ne\pm1\)

Ta có : \(\frac{x+1}{x-1}-\frac{4}{x+1}=\frac{3-x^2}{1-x^2}\)

=> \(\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}=\frac{x^2-3}{x^2-1}\)

=> \(\left(x+1\right)^2-4\left(x-1\right)=x^2-3\)

=> \(x^2+2x+1-4x+4=x^2-3\)

=> \(-2x=-3-5\)

=> \(x=4\left(TM\right)\)

Vậy phương trình có nghiệm là x = 4 .

c, Ta có : \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}-\frac{2-10x}{2014}\)

=> \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}+\frac{10x-2}{2014}\)

=> \(\frac{10x+3}{2009}+1+\frac{10x-1}{2013}+1=\frac{10x+1}{2011}+1+\frac{10x-2}{2014}+1\)

=> \(\frac{10x+3}{2009}+\frac{2009}{2009}+\frac{10x-1}{2013}+\frac{2013}{2013}=\frac{10x+1}{2011}+\frac{2011}{2011}+\frac{10x-2}{2014}+\frac{2014}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}=\frac{10x+2012}{2011}+\frac{10x+2012}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}-\frac{10x+2012}{2011}-\frac{10x+2012}{2014}=0\)

=> \(\left(10x+2012\right)\left(\frac{1}{2009}+\frac{1}{2013}-\frac{1}{2011}-\frac{1}{2014}\right)=0\)

=> \(10x+2012=0\)

=> \(x=-\frac{2012}{10}\)

Vậy phương trình có nghiệm là x = \(-\frac{2012}{10}\) .

19 tháng 2 2020

Bài 3:

Giải:

Ta có : A = x2 + x + 2012

= x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}\) + \(\frac{8047}{4}\)

= (x + \(\frac{1}{2}\))2 + \(\frac{8047}{4}\)\(\frac{8047}{4}\)

⇒ Amin = \(\frac{8047}{4}\) ⇔ (x + \(\frac{1}{2}\))2 = 0 ⇔ x = \(-\frac{1}{2}\)

Vậy Amin = \(\frac{8047}{4}\) tại x = \(-\frac{1}{2}\)

Chúc bạn học tốt@@

Bài 1:

a) Ta có: \(2,3x-2\left(0,7+2x\right)=3,6-1,7x\)

\(\Leftrightarrow2,3x-1,4-4x-3,6+1,7x=0\)

\(\Leftrightarrow-5=0\)(vl)

Vậy: \(x\in\varnothing\)

b) Ta có: \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)

\(\Leftrightarrow\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)

hay x=1

Vậy: x=1

c) Ta có: \(\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(\Leftrightarrow\frac{9x}{90}-\frac{3x}{90}-\frac{4x}{90}-\frac{72}{90}=0\)

\(\Leftrightarrow2x-72=0\)

\(\Leftrightarrow2\left(x-36\right)=0\)

mà 2>0

nên x-36=0

hay x=36

Vậy: x=36

d) Ta có: \(\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\Leftrightarrow12\left(10x+3\right)=8\left(7-8x\right)\)

\(\Leftrightarrow120x+36=56-64x\)

\(\Leftrightarrow120x+36-56+64x=0\)

\(\Leftrightarrow184x-20=0\)

\(\Leftrightarrow184x=20\)

hay \(x=\frac{5}{46}\)

Vậy: \(x=\frac{5}{46}\)

e) Ta có: \(\frac{10x-5}{18}+\frac{x+3}{12}=\frac{7x+3}{6}-\frac{12-x}{9}\)

\(\Leftrightarrow\frac{2\left(10x-5\right)}{36}+\frac{3\left(x+3\right)}{36}-\frac{6\left(7x+3\right)}{36}+\frac{4\left(12-x\right)}{36}=0\)

\(\Leftrightarrow2\left(10x-5\right)+3\left(x+3\right)-6\left(7x+3\right)+4\left(12-x\right)=0\)

\(\Leftrightarrow20x-10+3x+9-42x-18+48-4x=0\)

\(\Leftrightarrow-23x+29=0\)

\(\Leftrightarrow-23x=-29\)

hay \(x=\frac{29}{23}\)

Vậy: \(x=\frac{29}{23}\)

f) Ta có: \(\frac{x+4}{5}-x-5=\frac{x+3}{2}-\frac{x-2}{2}\)

\(\Leftrightarrow\frac{2\left(x+4\right)}{10}-\frac{10x}{10}-\frac{50}{10}=\frac{25}{10}\)

\(\Leftrightarrow2x+8-10x-50-25=0\)

\(\Leftrightarrow-8x-67=0\)

\(\Leftrightarrow-8x=67\)

hay \(x=\frac{-67}{8}\)

Vậy: \(x=\frac{-67}{8}\)

g) Ta có: \(\frac{2-x}{4}=\frac{2\left(x+1\right)}{5}-\frac{3\left(2x-5\right)}{10}\)

\(\Leftrightarrow5\left(2-x\right)-8\left(x+1\right)+6\left(2x-5\right)=0\)

\(\Leftrightarrow10-5x-8x-8+12x-30=0\)

\(\Leftrightarrow-x-28=0\)

\(\Leftrightarrow-x=28\)

hay x=-28

Vậy: x=-28

h) Ta có: \(\frac{x+2}{3}+\frac{3\left(2x-1\right)}{4}-\frac{5x-3}{6}=x+\frac{5}{12}\)

\(\Leftrightarrow\frac{4\left(x+2\right)}{12}+\frac{9\left(2x-1\right)}{12}-\frac{2\left(5x-3\right)}{12}-\frac{12x}{12}-\frac{5}{12}=0\)

\(\Leftrightarrow4x+8+18x-9-10x+6-12x-5=0\)

\(\Leftrightarrow0x=0\)

Vậy: \(x\in R\)

Bài 2:

a) Ta có: \(5\left(x-1\right)\left(2x-1\right)=3\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow5\left(x-1\right)\left(2x-1\right)-3\left(x-1\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(2x-1\right)-3\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(10x-5-3x-24\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x-29\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\7x-29=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\7x=29\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{29}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{29}{7}\right\}\)

b) Ta có: \(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+5\ge5\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(\left[{}\begin{matrix}3x-2=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=-6\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{\frac{2}{3};-6\right\}\)

c) Ta có: \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow27x^3-8-\left(27x^3-1\right)-x+4=0\)

\(\Leftrightarrow27x^3-8-27x^3+1-x+4=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: Tập nghiệm S={-3}

d) Ta có: \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-\left(x^2+x-12\right)-5x=0\)

\(\Leftrightarrow x^2-x-x^2-x+12-5x=0\)

\(\Leftrightarrow12-7x=0\)

\(\Leftrightarrow7x=12\)

hay \(x=\frac{12}{7}\)

Vậy: Tập nghiệm \(S=\left\{\frac{12}{7}\right\}\)

e) Ta có: (2x+1)(2x-1)=4x(x-7)-3x

\(\Leftrightarrow4x^2-1-4x^2+28x+3x=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow31x=1\)

hay \(x=\frac{1}{31}\)

Vậy: Tập nghiệm \(S=\left\{\frac{1}{31}\right\}\)

20 tháng 2 2020

a) \(\frac{4x-8}{2x^2+1}=0\)

\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\)

Vậy x=2

b)

\(\frac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)

\(\Rightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy x=-2