![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\\= (x^3+x^2y-2x^2)-(xy+y^2-2y)+(x+y-2)+2019\\=x^2(x+y-2)-y(x+y-2)+(x+y-2)+2019\\=x^2.0-y.0+0+2019=2019\)
c) +) Với \(x + y + z = 0\) thì \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{(-z)}{y} \cdot \dfrac{(-x)}z \cdot \dfrac{(-y)}x = -1\)
+) Với \(x + y + z \ne 0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{y+z-x}x = \dfrac{z+x-y}y = \dfrac{x+y-z}z = \dfrac{y+z-x+z+x-y+x+y-z}{x+y+z} = \dfrac{x+y+z}{x+y+z} =1\)
Ta có \(\dfrac{y+z-x}x = 1 \iff y+z-x = x \iff y+z = 2x\)
Tương tự : \(z+x = 2y ; x + y = 2z\)
Kh đó \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{2z}{y} \cdot \dfrac{2x}z \cdot \dfrac{2y}x = 8\)