Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{n^4-3n^3-n^2+3n+7}{n-3}=\frac{n^3\left(n-3\right)-\left(n^2-3n\right)+7}{n-3}=\frac{n^3\left(n-3\right)-n\left(n-3\right)+7}{n-3}\)
\(=\frac{\left(n-3\right)\left(n^3-n\right)+7}{n-3}=\frac{\left(n-3\right)\left(n^3-n\right)}{n-3}+\frac{7}{n-3}=n^3-n+\frac{7}{n-3}\)
Theo đề bài n là số nguyên => \(n^3-n\) là số nguyên
Để \(n^3-n+\frac{7}{n-3}\) có giá trị là 1 số nguyên <=> \(\frac{7}{n-3}\) có giá trị là 1 số nguyên
=> n - 3 là ước của 7 => Ư(7) = { - 7; - 1; 1; 7 }
Ta có bảng sau :
n - 3 | - 7 | - 1 | 1 | 7 |
n | - 4 | 2 | 4 | 10 |
Mà x là số nguyên lớn nhất => x = 10
Vậy x = 10
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{7n+15}{n-3}=\frac{7n-21}{n-3}+\frac{36}{n-3}=\frac{7.\left(n-3\right)}{n-3}+\frac{36}{n-3}=7+\frac{36}{n-3}\)
7 là số nguyên =>để ps trên là số nguyên thì n-3 phải là ước của 36
\(\Rightarrow n-3\in\left\{1;2;3;4;6;9;12;18;36\right\}\)
\(n\in\){4;5;6;7;9;12;15;21;39}
Vậy có 9 gtrị n thỏa mãn
![](https://rs.olm.vn/images/avt/0.png?1311)
Để ; \(\frac{n+3}{n+1}\in Z\)
Thì n + 3 chia hết cho n + 1
=> (n + 1) + 2 chia hết cho n + 1
=> 2 chia hết cho n + 1
=> n + 1 thuộc Ư(2) = {-2;-1;1;2}
Ta có bảng :
n + 1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |
Đặt \(D=\frac{n^2+3n+3}{2n+1}\).Vì \(D\inℤ\Rightarrow4D\inℤ\)
Ta có \(4D=\frac{4n^2+12n+12}{2n+1}=\frac{\left(2n+1\right)^2+4\left(2n+1\right)+7}{2n+1}=2n+5+\frac{7}{2n+1}\).
Với n nguyên, để 4D là số nguyên thì \(7⋮2n+1\Rightarrow n\in\left\{-4;-1;0;3\right\}\)
Thử lại ta thấy các giá trị nguyên âm của n thỏa mãn là \(n=-4;n=-1\)
Vậy \(n\in\left\{-4;-1\right\}\)