Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : ED = EB = BD/2 ; AF = CF = AC/2 .
⇒⇒ BDACBDAC = BD2CD2BD2CD2 = DECFDECF (1).
Gọi O là điểm giao của BD và AC .
Xét ΔΔ ABO có BD // AC , theo hệ quả của định lí Ta-lét
⇒⇒ DOBO=COAODOBO=COAO
⇒⇒ DODO+BO=COCO+AODODO+BO=COCO+AO ⇔⇔ DOBD=COACDOBD=COAC
⇒⇒ BDAC=DOCOBDAC=DOCO (2) .
Từ (1) và (2) ta đc : DECF=DOCODECF=DOCO
⇒⇒DOCO=DECF=DO−DECO−CF=OEOFDOCO=DECF=DO−DECO−CF=OEOF.
⇒⇒ OEOD=OFOCOEOD=OFOC
Xét ΔΔ OCD có :OEOD=OFOCOEOD=OFOC (c/m trên)
⇒⇒ EF // CD (định lí Ta-lét đảo) .
Mà KH ⊥⊥ EF ⇒⇒ KH ⊥⊥ CD .
Xét ΔΔ HCD có :
KH ⊥⊥ CD ; HC = HD
⇒⇒ ΔΔ HCD cân tại H (KH vừa là trung tuyến , vừa là đường cao của ΔΔ HCD ) .
cho k
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a) Ta có E, K lần lượt là trung điểm của BD và CD nên EK là đường trung bình của ΔBCD
⇒EK//BC mà HF⊥BC(gt)
⇒HF⊥EK.
Ta có F, K lần lượt là trung điểm của AC và CD nên FK là đường trung bình của ΔACDΔACD
⇒FK//AD mà EH⊥AD(gt)
⇒EH⊥FK.
Xét tam giác EFK có hai đường cao EH và FH cắt nhau tại H
Do đó H là trực tâm của ΔEFK.
b) Gọi I là trung điểm của AD, ta có IE là đường trung bình của ΔABD
⇒IE//AB//CD (1)
Và IF là đường trung bình của ΔACD⇒IF//DC (2)
Từ (1) và (2) ⇒ IE và IF phải trùng nhau (tiên đề Ơ clit) hay ba điểm I, E, F thẳng hàng.
Hay EF//DC mà KH⊥EF (H là trực tâm ΔEFK)⇒KH⊥DC.
Vì vậy xét ΔDHC có đường trung tuyến HK đồng thời là đường cao nên ΔDHC cân tại H.
a) Xét tam giác ACD có: AF=FC (gt) ; DK=KC (gt)
=> FK là đường trung bình của tam giác ACD
=> FK//AD
=> ADKF là hình thang
Chứng minh tương tự t cũng có: ME là đường trung bình của tam giác ABD
=> ME // AD mà FK//AD (cmt)
=> ME//FK (1)
Chứng minh tương tự ta cũng có:
MF là đường trung bình tam giác ABC , EK là đường trung bình tam giác DBC
=> MF//BC ; EK // BC
=> MF//EK (2)
Từ (1) và (2) ta có: EMFK là hình bình hành
1: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>AD=AE và BD=CE
Xét ΔABC có \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
nên DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
Hình thang BEDC có BD=CE
nên BEDC là hình thang cân
2: Ta có: \(\widehat{DAK}=\widehat{KAB}\)
mà \(\widehat{KAB}=\widehat{AKD}\)
nên \(\widehat{DAK}=\widehat{DKA}\)
=>DA=DK
Ta có: \(\widehat{CBK}=\widehat{ABK}\)
mà \(\widehat{ABK}=\widehat{BKC}\)
nên \(\widehat{CKB}=\widehat{CBK}\)
=>CB=CK
CD=AD+BC
=CK+DK
=>C,K,D thẳng hàng