K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

A B C M H I 1 2 2 1

a,Xét tam giác AIH và tam giác MHI có

IH  là cạnh chung

H2^=I1^(MI//AC)

H1^=I2^(MH//AB)

=> tam giác AIH = tam giác MHI(g.c.g)

6 tháng 3 2020

rễ vậy lun

10 tháng 5 2020

Giải thích các bước giải:

a.Ta có : MI//AC,MH//AB→ˆAHI=ˆMIH,ˆAIH=ˆIHMMI//AC,MH//AB→AHI^=MIH^,AIH^=IHM^

→ΔAIH=ΔMHI(g.c.g)→ΔAIH=ΔMHI(g.c.g)

b.Từ câu a →AI=MH→AI=MH

Mà HM//AB,ΔABCHM//AB,ΔABC cân tại A →ˆHMC=ˆABC=ˆACB→ΔHMC→HMC^=ABC^=ACB^→ΔHMC cân tại H
→HM=HC→AI=HC→HM=HC→AI=HC

c.Ta có : ΔABCΔABC cân tại A, MI//AC→ˆIBM=ˆACB=ˆIMBMI//AC→IBM^=ACB^=IMB^

→IB=IM→IB=IM

Do HI là trung trực của MN →IM=IN→IB=IN→IM=IN→IB=IN

d.Ta có :

IHIH là trung trưc của MN
→ˆIHD=180o−ˆIHN=180o−ˆIHM=ˆAHI+ˆMHC=ˆAHI+ˆIAH=ˆDIH→IHD^=180o−IHN^=180o−IHM^=AHI^+MHC^=AHI^+IAH^=DIH^

→DI=DH→DI=DH

→PADH=AD+DH+HA=AI+ID+DI+HA=2DI+HC+AH=2DI+AC→PADH=AD+DH+HA=AI+ID+DI+HA=2DI+HC+AH=2DI+AC

→PADH→PADH thay đổi

imagerotate

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao choAM > BM và AN > CN. Chứng minh rằng:a) BC < BM + CN + MN.b) BC nhỏ hơn chu vi của tam giác AMN.Bài 2. Tính chu vi của tam giác cân ABC, biết:a) AB = 2cm, AC = 5cmb) AB = 16cm, AC = 8cm.Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M khôngtrùng với C). Chứng minh MA + MB > CA + CB.Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền...
Đọc tiếp

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao cho
AM > BM và AN > CN. Chứng minh rằng:
a) BC < BM + CN + MN.
b) BC nhỏ hơn chu vi của tam giác AMN.

Bài 2. Tính chu vi của tam giác cân ABC, biết:
a) AB = 2cm, AC = 5cm
b) AB = 16cm, AC = 8cm.

Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M không
trùng với C). Chứng minh MA + MB > CA + CB.

Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền trong của góc. Hãy xác định điểm A
trên Ox, điểm B trên Oy sao cho chu vi tam giác MAB là nhỏ nhất (Gợi ý: Lấy E, F
sao cho Ox là trung trực của ME, Oy là trung trực của MF).

Bài 5. Cho tam giác ABC, điểm O nằm giữa B và C. Trên tia đối của tia OA lấy điểm
D. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh

MN< hoặc = (AC+BD)/2

Bài 6. Cho góc xOy, vẽ Oz là tia phân giác của góc xOy. Từ điểm M ở trong góc xOz
vẽ MH vuông góc với Ox (H thuộc Ox), vẽ MK vuông góc với Oy (K thuộc Oy).
Chứng minh MH < MK.

0