K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

b: Xét (O) có

ΔBCD nội tiếp

CD là đường kính

Do đó: ΔCBD vuông tại B

=>CB\(\perp\)BD

mà OA\(\perp\)BC

nên OA//BD

c: Xét (O) có

OB là bán kính

EB\(\perp\)OB tại B

Do đó: EB là tiếp tuyến của (O)

9 tháng 6 2021

ai giup a

21 tháng 12 2023

loading...  loading...  loading...  

21 tháng 12 2023

camon<33

1: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

2: Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD

BC\(\perp\)CD

BC\(\perp\)OA

Do đó: CD//OA

3: Gọi giao điểm của OE và AD là H

OE\(\perp\)AD

nên OE\(\perp\)AD tại H

Gọi giao điểm của BC và OA là K

OA là đường trung trực của BC

=>OA\(\perp\)BC tại trung điểm của BC

=>OA\(\perp\)BC tại K và K là trung điểm của BC

Xét ΔOBA vuông tại B có BK là đường cao

nên \(OK\cdot OA=OB^2\)

Xét ΔOHA vuông tại H và ΔOKE vuông tại K có

\(\widehat{HOA}\) chung

Do đó: ΔOHA đồng dạng với ΔOKE

=>\(\dfrac{OH}{OK}=\dfrac{OA}{OE}\)

=>\(OH\cdot OE=OA\cdot OK=OB^2\)

=>\(OH\cdot OE=OD^2\)

=>\(\dfrac{OH}{OD}=\dfrac{OD}{OE}\)

Xét ΔOHD và ΔODE có

\(\dfrac{OH}{OD}=\dfrac{OD}{OE}\)

\(\widehat{HOD}\) chung

Do đó: ΔOHD đồng dạng với ΔODE

=>\(\widehat{OHD}=\widehat{ODE}=90^0\)

=>ED là tiếp tuyến của (O)

2 tháng 12 2023

Để giải câu c, ta sẽ sử dụng các kiến thức về góc nội tiếp và góc ngoại tiếp của đường tròn.

 

Vì AB và AC là hai tiếp tuyến của đường tròn (O), nên ta có:

∠OAB = ∠OCA (góc nội tiếp chắn cung AC)

∠OBA = ∠OAC (góc nội tiếp chắn cung AB)

 

Ta cũng biết rằng OA vuông góc với AB 

 

Do đó, ta có:

∠OAB = ∠OBA (cùng là góc ngoại tiếp chắn cung AB)

∠OCA = ∠OAC (cùng là góc ngoại tiếp chắn cung AC)

 

Từ đó, ta suy ra:

∠OAB = ∠OBA = ∠OCA = ∠OAC

 

Vậy tứ giác OBCA là tứ giác nội tiếp.

 

Theo định lý góc nội tiếp, ta có:

∠OBC = ∠OAC (góc chắn cung AC)

∠OCB = ∠OAB (góc chắn cung AB)

 

Vì ∠OAB = ∠OBA và ∠OBC = ∠OCB, nên ta có:

∠OBC = ∠OCB

 

Do đó, tam giác OBC là tam giác cân tại O.

 

Vì tam giác OBC là tam giác cân, nên đường trung tuyến BD của tam giác OBC là đường cao và đường phân giác của tam giác OBC.

 

Vậy, ta có:

BD ⊥ OC (đường cao của tam giác OBC)

BD là đường phân giác của ∠OBC (đường phân giác của tam giác OBC)

 

Do đó, ta có:

∠BDC = ∠OBC/2 (do BD là đường phân giác của ∠OBC)

 

Vì ∠OBC = ∠OCB, nên ta có:

∠BDC = ∠OCB/2

 

Vì ∠OCB = ∠OCA (cùng là góc ngoại tiếp chắn cung AC), nên ta có:

∠BDC = ∠OCA/2

 

Vậy, ta suy ra:

∠BDC = ∠OCA/2

 

Như vậy, ta có:

∠BDC = ∠OCA/2 = ∠OAC/2 (do ∠OCA = ∠OAC)

 

Do đó, CD song song với OA.

 

Tiếp theo, ta chứng minh rằng ED là tiếp tuyến của đường tròn (O).

 

Vì ∠OAB = ∠OBA và ∠OCA = ∠OAC, nên ta có:

∠OAB = ∠OBA = ∠OCA = ∠OAC

 

Vậy tứ giác OBCA là tứ giác nội tiếp.

 

Theo định lý góc nội tiếp, ta có:

∠OBC = ∠OAC (góc chắn cung AC)

∠OCB = ∠OAB (góc chắn cung AB)

 

Vì ∠OAB = ∠OBA và ∠OBC = ∠OCB, nên ta có:

∠OBC = ∠OCB

 

Do đó, tam giác OBC là tam giác cân tại O.

 

Vì tam giác OBC là tam giác cân, nên đường trung tuyến BD của tam giác OBC là đường cao và đường phân giác của tam giác OBC.

 

Vậy, ta có:

BD ⊥ OC (đường cao của tam giác OBC)

BD là đường phân giác của ∠OBC (đường phân giác của tam giác OBC)

 

Do đó, ta có:

∠BDC = ∠OBC/2 (do BD là đường phân giác của ∠OBC)

 

a: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay BC=2BI

2 tháng 2 2021

Giúp mình với

 

2 tháng 2 2021

Bn giúp mik câu dưới đc ko

21 tháng 11 2018

các bạn giúp mình với ạ .mình cám ơn

4 tháng 1 2021

Góc HCF sao lại bằng góc FCA vậy mn ???