K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2021

Ta có :

200920 = ( 20092 )10 =  ( 2009 . 2009 )10

2009200910 = ( 2009 . 10001 )10

Ta thấy : 2009 . 2009 < 2009 . 10001

=> ( 2009 . 2009 )10 < ( 2009 . 10001 )10 hay 200920 < 2009200910

26 tháng 9 2021

Ta có 

200920 = (20092)10 = (2009.2009)10

2009200910 = (2009.10 001)10

Vì 2009.2009 < 2009. 10 001 nên 200920 < 2009200910

Ta có: \(2009^{20}=\left(2009^2\right)^{10}=\left(2009\cdot2009\right)^{10}\)

\(20092009^{10}=\left(2009\cdot10001\right)^{10}\)

mà \(2009< 10001\)

nên \(2009^{20}< 20092009^{10}\)

24 tháng 1 2021

 

200920 và 2009200910

 200910\(^{ }\) .200910    và    20092009 10;   

=4036081 10  và   20092009 10

 4036081 10 >  20092009 10

Ta có:2009200910 = (2009.10001)10 = 200910.1000110 > 200910.200910 = 200920

3 tháng 1 2023

200920200920 và 2009200910.2009200910.

Ta có:

200920=(20092)10=(2009.2009)10.200920=(20092)10=(2009.2009)10.

2009200910=(2009.10001)10.2009200910=(2009.10001)10.

Vì 2009.2009<2009.100012009.2009<2009.10001

⇒(2009.2009)10<(2009.10001)10⇒(2009.2009)10<(2009.10001)10

⇒200920<2009200910.

Bài toán 1: Cho tam giác ABC, biết   a)    So sánh các cạnh của tam giácb)    Tia phân giác của góc A cắt BC ở D. So sánh độ dài các đoạn BD và CD.Bài toán 2: Cho tam giác ABC cân ở A có chu vi bằng 16cm, cạnh đáy BC = 4cm. So sánh các góc của tam giác ABC.Bài toán 3: Cho tam giác ABC, biết  So sánh các cạnh của tam giác.Bài toán 4: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy hai điểm D và E (D nằm giữa A và E). Chứng minh rằng  Bài toán...
Đọc tiếp

Bài toán 1: Cho tam giác ABC, biết   

a)    So sánh các cạnh của tam giác

b)    Tia phân giác của góc A cắt BC ở D. So sánh độ dài các đoạn BD và CD.

Bài toán 2: Cho tam giác ABC cân ở A có chu vi bằng 16cm, cạnh đáy BC = 4cm. So sánh các góc của tam giác ABC.

Bài toán 3: Cho tam giác ABC, biết  So sánh các cạnh của tam giác.

Bài toán 4: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy hai điểm D và E (D nằm giữa A và E). Chứng minh rằng  

Bài toán 5: Cho tam giác ABC CÓ  

a)    So sánh độ dài các cạnh AB và AC

b)    Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho  Chứng minh .

Bài toán 6: Tam giác ABC có  Tia phân giác của góc A cắt BC ở D. Chứng minh rằng điểm D nằm giữa hai điểm B và m (M là trung điểm của BC).

Bài toán 7: Tam giác ABC cân tại A. Kẻ tia Bx nằm giữa hai tia BA và BC. Trên tia Bx lấy điểm D nằm ngoài tam giác ABC. Chứng minh rằng  

Bài toán 8: Cho tam giác ABC cân ở A, kẻ  Trên các đoạn thẳng HD và HC, lấy các điểm D và E sao cho  So sánh độ dài AD, AE bằng cách xét hai hình chiếu.

Bài toán 9: Cho tam giác ABC có  và  là các góc nhọn. Gọi D là điểm bất kfi thuộc cnahj BC, gọi H và K là chân các đường vuông góc kẻ từ B và C đến đường thẳng AD.

a)    So sánh các độ dài BH và BD. Có khi nào BH bằng BD không?

b)    So sánh tổng độ dài BH + CK với BC.

Bài toán 10: Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D và E sao cho  Gọi M là trung điểm của DE.

a)    Chứng minh rằng  

b)    So sánh độ dài AB, AD, AE, AC.

Bài toán 11: Cho tam giác ABC  Gọi M là một điểm nằm giữa B và C. Gọi E và F là hình chiếu của B và C xuống đường thẳng AM. So sánh tổng  với BC

1
22 tháng 1 2022

Bài toán 2:  Cho tam giác ABC cân ở A có chu vi bằng 16cm, cạnh đáy BC = 4cm. So sánh các góc của tam giác ABC.

Tam giác ABC cân tại A (gt). => Góc B = Góc C (Tính chất tam giác cân).

Ta có: Tam giác ABC cân ở A có chu vi bằng 16cm, cạnh đáy BC = 4cm (gt).

=> AB = AC = (16 - 4) : 2 = 6 (cm).

Xét tam giác ABC cân tại A:

Ta có: AB > BC (AB = 6 cm; BC = 4cm).

=> Góc C > Góc A.

Vậy trong tam giác ABC có Góc B = Góc C > Góc A.

 

4 tháng 7 2017

Điểm trung bình lớp 7C là: 6,25

Điểm trung bình lớp 7A là: 6,675

Mà 6,25 < 6,675

Vậy lớp 7A có kết quả làm bài kiểm tra Toán tốt hơn lớp 7C

12 tháng 10 2015

2600 < 3400

12 tháng 10 2015

các bạn ơi đúng là 2^600 < 3^400 là đúng nhưng cách này dễ hơn 

2^600=(2^3)^200 và 3^400=(3^2)^200  cách giải dễ không

Bài toán 1. So sánh:202009và1020092009.Bài toán 2. Tính tỉ sốBA, biết:2008120072...320062200712008200912008120071...413121BABài toán 3. Cho x, y, z, tN*.Chứng minh rằng: M =tzxttzyztyxyzyxxcó giá trị không phải là sốtự nhiên.Bài toán 4. Tìm x; yZ biết:a. 25 –2y= 8( x – 2009)b.3xy=x3y+ 1997c. x + y + 9 = xy – 7.Bài toán 5. Tìm x biếta.1632)32(2)32(5  xxxb.42622...
Đọc tiếp

Bài toán 1. So sánh:

20

2009

10

20092009

.

Bài toán 2. Tính tỉ số

B

A

, biết:

2008

1

2007

2

...

3

2006

2

2007

1

2008

2009

1

2008

1

2007

1

...

4

1

3

1

2

1





B

A

Bài toán 3. Cho x, y, z, t

N

*

.

Chứng minh rằng: M =

tzx

t

tzy

z

tyx

y

zyx

x









có giá trị không phải là số

tự nhiên.

Bài toán 4. Tìm x; y

Z biết:

a. 25 –

2

y

= 8( x – 2009)

b.

3

x

y

=

x

3

y

+ 1997

c. x + y + 9 = xy – 7.

Bài toán 5. Tìm x biết

a.

1632)32(2)32(5  xxx

b.

426

22

 xxx

.

Bài toán 6. Chứng minh rằng:

22222222

10.9

19

...

4.3

7

3.2

5

2.1

3



< 1

Bài toán 7. Cho n số x

1

, x

2

, ..., x

n

mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu

x

1

.x

2

+ x

2

.x

3

+ ...+ x

n

.x

1

= 0 thì n chia hết cho 4.

Bài toán 8. Chứng minh rằng:

S =

20042002424642

2

1

2

1

...

2

1

2

1

...

2

1

2

1

2

1



 nn

< 0,2

Bài toán 9. Tính giá trị của biểu thức A =

n

x

+

n

x

1

giả sử

01

2

 xx

.

Bài toán 10. Tìm max của biểu thức:

1

43

2

x

x

.

Bài toán 11. Cho x, y, z là các số dương. Chứng minh rằng

D =

4

3

222





 yxz

z

xzy

y

zyx

x

Bài toán 12. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu

thức: A(x) = ( 3 - 4x + x

2

)

2004

.( 3 + 4x + x

2

)

2005

Bài toán 13. Tìm các số a, b, c nguyên dương thỏa mãn:

b

aa 553

23



và a + 3 =

c

5

Bài toán 14. Cho x = 2005. Tính giá trị của biểu thức:

120062006...200620062006

22002200320042005

 xxxxxx

Bài toán 15. Rút gọn biểu thức: N =

312

208

2

2





x

xx

xx

Bài toán 16. Trong 3 số x, y, z có 1 số dương, 1 số âm và một số 0. Hỏi mỗi số đó thuộc

loại nào biết:

zyyx

23



Bài toán 17. Tìm hai chữ số tận cùng của tổng sau:

B =

2009432

3...3333 

Bài toán 18. Cho 3x – 4y = 0. Tìm min của biểu thức: M =

22

yx 

Bài toán 19. Tìm x, y, z biết:

5432

222222

zyxzyx 



.

Bài toán 20. Tìm x, y biết rằng: x

2

+ y

2

+

22

11

yx

= 4

Bài toán 21. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ

số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 22. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4

là số chính phương.

Bài toán 23. Chứng minh rằng nếu các chữ số a, b, c thỏa mãn điều kiện

cacdab :: 

thì

cabbbcabbb :: 

.

Bài toán 24. Tìm phân số

n

m

khác 0 và số tự nhiên k, biết rằng

nk

km

n

m 

.

Bài toán 25. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu

bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 26. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 27. Tìm n biết rằng: n

3

- n

2

+ 2n + 7 chia hết cho n

2

+ 1.

Bài toán 28. Chứng minh rằng: B =

32

12

2

n

là hợp số với mọi số nguyên dương n.

Bài toán 29. Tìm số dư khi chia (n

3

- 1)

111

. (n

2

- 1)

333

cho n.

Bài toán 30. Tìm số tự nhiên n để 1

n

+ 2

n

+ 3

n

+ 4

n

chia hết cho 5.

Bài toán 31.

a. Chứng minh rằng: Nếu a không là bội số của 7 thì a

6

– 1 chia hết cho 7.

b. Cho f(x + 1)(x

2

– 1) = f(x)(x

2

+9) có ít nhất 4 nghiệm.

c. Chứng minh rằng: a

5

– a chia hết cho 10.

Bài toán 32. Tính giá trị của biểu thức: A =

54

275 zxy 

tại (x

2

– 1) + (y – z)

2

= 16

1
5 tháng 7

Bạn viết gì vậy mình không hiểu??

Đề đâu mà so sánh ? "200920 và @@".

1 tháng 9 2018

so sánh 2009^20 với cái gì

29 tháng 7 2017

224 = 26.4 = ( 26)4 = 644 

316 = 34.4 = ( 34)4 = 814 

Do 64 < 81 nên 644 <814 suy ra 224 < 316 

^^ 

29 tháng 7 2017

Bài 1: 

224 = 23.8  = (23)= 88

316 = 32.8 = (32)= 98  

Vì 8<9 => 8<   98