K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

1: \(\dfrac{1}{5^{x-1}}+3\cdot5^{2-x}=\dfrac{16}{125}\)

=>\(\dfrac{1}{5^x\cdot\dfrac{1}{5}}+3\cdot\dfrac{25}{5^x}=\dfrac{16}{125}\)

=>\(\dfrac{5}{5^x}+\dfrac{75}{5^x}=\dfrac{16}{125}\)

=>\(\dfrac{80}{5^x}=\dfrac{16}{125}\)

=>\(5^x=80\cdot\dfrac{125}{16}=5\cdot125=5^4\)

=>x=4

2: \(\left(3-\left|x-\dfrac{1}{2}\right|\right)\left(\dfrac{8}{15}-\dfrac{1}{5}\right)+\dfrac{2}{3}=1\)

=>\(\left(3-\left|x-\dfrac{1}{2}\right|\right)\cdot\dfrac{1}{3}=1-\dfrac{2}{3}=\dfrac{1}{3}\)

=>\(3-\left|x-\dfrac{1}{2}\right|=1\)

=>\(\left|x-\dfrac{1}{2}\right|=3-1=2\)

=>\(\left[{}\begin{matrix}x-\dfrac{1}{2}=2\\x-\dfrac{1}{2}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2+\dfrac{1}{2}=\dfrac{5}{2}\\x=-2+\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)

Bài 3:

1: Gọi ba phần được chia lần lượt là x,y,z

Ba phần tỉ lệ với 2/5;3/4;1/6 nên \(\dfrac{x}{\dfrac{2}{5}}=\dfrac{y}{\dfrac{3}{4}}=\dfrac{z}{\dfrac{1}{6}}\)

=>\(2,5x=\dfrac{4}{3}y=6z\)

=>\(15x=8y=36z\)

=>\(\dfrac{15x}{360}=\dfrac{8y}{360}=\dfrac{36z}{360}\)

=>\(\dfrac{x}{24}=\dfrac{y}{45}=\dfrac{z}{10}=k\)

=>x=24k; y=45k; z=10k

\(x^2+y^2+z^2=24309\)

=>\(\left(24k\right)^2+\left(45k\right)^2+\left(10k\right)^2=24309\)

=>\(k^2=9\)

=>\(\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)

TH1: k=3

=>\(x=24\cdot3=72;y=45\cdot3=135;z=10\cdot3=30\)

TH2: k=-3

=>\(x=24\cdot\left(-3\right)=-72;y=45\cdot\left(-3\right)=-135;z=10\cdot\left(-3\right)=-30\)

NV
16 tháng 1 2024

a.

\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)

\(=\dfrac{x^2+3x+1}{x+1}\)

2.

\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)

Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)

30 tháng 1 2024

4.linda sometimes brings her home made after the class

30 tháng 1 2024

Linh 6A3(THCS Mai Đình) à

 

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Bài 4:

a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:

$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$

$\frac{DB}{DC}=\frac{D'B'}{D'C}$

$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$

$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$

Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$

Xét tam giác $ABD$ và $A'B'D'$ có:

$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$

$\frac{AB}{A'B'}=\frac{BD}{B'D'}$

$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)

b.

Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$

$\Rightarrow AD.B'C'=BC.A'D'$

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Hình bài 4:

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Bạn cần hỗ trợ bài nào nhỉ?

NV
16 tháng 1 2024

ĐKXĐ: \(\left|x-2\right|-1\ne0\)

\(\Rightarrow\left|x-2\right|\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)