
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Đặt A'B'=a
ΔA'B'C' vuông tại B'
=>\(\left(A^{\prime}B^{\prime}\right)^2+\left(B^{\prime}C^{\prime}\right)^2=\left(A^{\prime}C^{\prime}\right)^2\)
=>\(\left(A^{\prime}C^{\prime}\right)^2=a^2+a^2=2a^2\)
=>\(A^{\prime}C^{\prime}=a\sqrt2\) (1)
Vì ABCD.A'B'C'D' là hình lập phương
nên A'A//C'C và A'A=C'C
=>A'ACC' là hình bình hành
=>A'C'//AC
=>\(\hat{AC;A^{\prime}D}=\hat{A^{\prime}C^{\prime};A^{\prime}D}=\hat{DA^{\prime}C^{\prime}}\)
A'B'C'D' là hình vuông
=>A'D'=D'C'=C'B'=A'B'=a
Vì ABCD.A'B'C'D' là hình lập phương
nên A'B'BA là hình vuông
=>A'A=A'B'=a
Vì ABCD.A'B'C'D' là hình lập phương
nên D'D=A'A=a
ΔA'D'D vuông tại D'
=>\(\left(D^{\prime}A^{\prime}\right)^2+\left(D^{\prime}D\right)^2=\left(A^{\prime}D\right)^2\)
=>\(\left(A^{\prime}D\right)^2=a^2+a^2=2a^2\)
=>\(A^{\prime}D=a\sqrt2\)
D'C'CD là hình vuông
=>\(\left(DC^{\prime}\right)^2=\left(D^{\prime}D\right)^2+\left(D^{\prime}C^{\prime}\right)^2=a^2+a^2=2a^2\)
=>\(DC^{\prime}=a\sqrt2\)
=>DC'=DA'=A'C'
=>ΔDA'C' đều
=>\(\hat{DA^{\prime}C^{\prime}}=60^0\)
=>\(\hat{AC;A^{\prime}D}=60^0\)
=>Chọn C

Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:
p=O'A'OA=22=1�=�'�'��=22=1;
q=O'B'OB=13�=�'�'��=13;
r=O'C'OC=46=23�=�'�'��=46=23.

Câu 1: \(\frac{\pi}{2}<\alpha,\beta<\pi\)
=>\(\sin\alpha>0;\sin\beta>0;cos\alpha<0;cos\beta<0\)
\(\sin^2\alpha+cos^2\alpha=1\)
=>\(cos^2\alpha=1-\sin^2\alpha=1-\left(\frac13\right)^2=\frac89\)
mà \(cos\alpha<0\)
nên \(cos\alpha=-\frac{2\sqrt2}{3}\)
Ta có: \(\sin^2\beta+cos^2\beta=1\)
=>\(\sin^2\beta=1-\left(-\frac23\right)^2=1-\frac49=\frac59\)
mà \(\sin\beta>0\)
nên \(\sin\beta=\frac{\sqrt5}{3}\)
\(\sin\left(\alpha+\beta\right)=\sin\alpha\cdot cos\beta+cos\alpha\cdot\sin\beta\)
\(=\frac13\cdot\frac{-2}{3}+\frac{-2\sqrt2}{3}\cdot\frac{\sqrt5}{3}=\frac{-\sqrt2-2\sqrt{10}}{9}\)
Câu 2:
\(P=cos\left(a+b\right)\cdot cos\left(a-b\right)\)
\(=\frac12\cdot\left\lbrack cos\left(a+b+a-b\right)+cos\left(a+b-a+b\right)\right\rbrack=\frac12\cdot\left\lbrack cos2a+cos2b\right\rbrack\)
\(=\frac12\cdot\left\lbrack2\cdot cos^2a-1+2\cdot cos^2b-1\right\rbrack=cos^2a+cos^2b-1\)
\(=\left(\frac13\right)^2+\left(\frac14\right)^2-1=\frac19+\frac{1}{16}-1=\frac{25}{144}-1=-\frac{119}{144}\)

a.
\(sin\left(2x-\dfrac{\pi}{4}\right)=-1\)
\(\Leftrightarrow2x-\dfrac{\pi}{4}=-\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\dfrac{\pi}{8}+k\pi\) (1)
\(-\dfrac{\pi}{3}\le x\le\dfrac{7\pi}{3}\Rightarrow-\dfrac{\pi}{3}\le-\dfrac{\pi}{8}+k\pi\le\dfrac{7\pi}{3}\)
\(\Rightarrow-\dfrac{5}{24}\le k\le\dfrac{59}{24}\Rightarrow k=\left\{0;1;2\right\}\)
Thế vào (1) \(\Rightarrow x=\left\{-\dfrac{\pi}{8};\dfrac{7\pi}{8};\dfrac{15\pi}{8}\right\}\)

a: \(S_1=2\cdot1^2-4\cdot1=2-4=-2\)
=>\(u_1=-2\)
\(S_2=2\cdot2^2-4\cdot2=8-8=0\)
=>\(u_1+u_2=0\)
=>\(u_2=-u_1=2\)
=>Đúng
b: \(S_{n}-S_{n-1}=\left(2n^2-4n\right)-\left\lbrack2\cdot\left(n-1\right)^2-4\cdot\left(n-1\right)\right\rbrack\)
\(=2n^2-4n-\left\lbrack2n^2-4n+2-4n+4\right\rbrack=2n^2-4n-\left(2n^2-8n+6\right)\)
\(=2n^2-4n-2n^2+8n-6=4n-6\)
=>Đúng
c: \(S_{n}-S_{n-1}=\left(u_1+u_2+\cdots+u_{n}\right)-\left(u_1+u_2+\cdots+u_{n-1}\right)=u_{n}\)
=>\(u_{n}=4n-6\)
=>\(u_{n+1}=4\left(n+1\right)-6=4n+4-6=4n-2\)
=>\(u_{n+1}-u_{n}=4n-2-\left(4n-6\right)=4n-2-4n+6=4\)
=>Công sai là 4
=>Sai
d: \(u_2+u_4+u_6+\cdots+u_{100}\)
\(=\left(4\cdot2-6\right)+\left(4\cdot4-6\right)+\cdots+\left(4\cdot100-6\right)\)
=4(2+4+...+100)-6*50
\(=4\cdot2\left(1+2+\cdots+50\right)-300=8\cdot\frac{50\cdot51}{2}-300=4\cdot50\cdot51-300\)
=200*51-300
=9900
=>Sai