Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)
\(=\frac{\sqrt{2\left(4-\sqrt{7}\right)}-\sqrt{2\left(4+\sqrt{7}\right)}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}+2}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+2}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|+2}{\sqrt{2}}=\frac{\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)+2}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\sqrt{7}-1+2}{\sqrt{2}}=\frac{0}{\sqrt{2}}=0\)
b) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
\(=\frac{\sqrt{2\left(6+\sqrt{11}\right)}-\sqrt{2\left(6-\sqrt{11}\right)}+3.2}{\sqrt{2}}\)
\(=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}+6}{\sqrt{2}}\)
\(=\frac{\sqrt{11+2\sqrt{11}+1}-\sqrt{11-2\sqrt{11}+1}+6}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}+6}{\sqrt{2}}\)
\(=\frac{\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|+6}{\sqrt{2}}\)
\(=\frac{\left(\sqrt{11}+1\right)-\left(\sqrt{11}-1\right)+6}{\sqrt{2}}\)
\(=\frac{\sqrt{11}+1-\sqrt{11}+1+6}{\sqrt{2}}=\frac{8}{\sqrt{2}}=4\sqrt{2}\)
A=\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{5}+1-\sqrt{7+2\sqrt{10}}}\)=\(\frac{\sqrt{2}\left(\sqrt{3}+3+\sqrt{2}-\sqrt{5+2\sqrt{6}}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{5}+1-\sqrt{7+2\sqrt{10}}\right)}\)
A=\(\frac{\sqrt{6}+3\sqrt{2}+2-\sqrt{10+4\sqrt{6}}}{2+\sqrt{10}+\sqrt{2}-\sqrt{14+4\sqrt{10}}}=\frac{\sqrt{6}+3\sqrt{2}+2-\sqrt{6}-2}{2-\sqrt{10}+\sqrt{2}-\sqrt{10}-2}=\frac{3\sqrt{2}}{\sqrt{2}}=3\)
câu đầu bạn xem lại đề đi nha
các phần còn lại
b)B=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)=\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)=\(\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)
c)tính từng căn nha
\(\sqrt{13-4\sqrt{3}}=\sqrt{12-2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)
\(\sqrt{22-12\sqrt{2}}=\sqrt{18-4\sqrt{18}+4}=\sqrt{\left(\sqrt{18}-2\right)^2}=\sqrt{18}-2=3\sqrt{2}-3\)
\(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}=3\sqrt{2}-2\sqrt{3}\)
thay vào tính C đc C=2
d)có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\sqrt{8}+1}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)\(\Rightarrow6\sqrt{2+\sqrt{9+4\sqrt{2}}}=6\sqrt{2+\sqrt{8}+1}=6\sqrt{2+2\sqrt{2}+1}\)
=\(6\sqrt{\left(\sqrt{2}+1\right)^2}=6\left(\sqrt{2}+1\right)=6\sqrt{2}+6\)\(\Rightarrow D=\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2}-6}=\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}\)
=\(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)
a, \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
b, \(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
\(=\sqrt{2+2\sqrt{2}+1}+\sqrt{4-2.2\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{2}+1+2-\sqrt{2}=3\)
câu 1 đã làm
câu 2
\(\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(\Leftrightarrow\sqrt{2}+1+\sqrt{2}-2\Leftrightarrow2\sqrt{2}-1\)
a) \(\sqrt{11+4\sqrt{7}}-\sqrt{11-4\sqrt{7}}\)
\(=\sqrt{7+4\sqrt{7}+4}-\sqrt{7-4\sqrt{7}+4}\)
\(=\sqrt{\left(\sqrt{7}+2\right)^2}-\sqrt{\left(\sqrt{7}-2\right)^2}\)
\(=\left|\sqrt{7}+2\right|-\left|\sqrt{7}-2\right|\)
\(=\sqrt{7}+2-\sqrt{7}+2=4\)
a) \(\sqrt{11+4\sqrt{7}}-\sqrt{11-4\sqrt{7}}=\sqrt{\left(2+\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-2\right)^2}=2+\sqrt{7}-\sqrt{7}+2=4\)
b) \(A=\sqrt{11-4\sqrt{6}}-\sqrt{11+4\sqrt{6}}\)
\(\Rightarrow A^2=11-4\sqrt{6}-2\sqrt{\left(11-4\sqrt{6}\right)\left(11+4\sqrt{6}\right)}+11+4\sqrt{6}\)
\(A^2=22-2\sqrt{121-96}\)
\(A^2=22-2\sqrt{25}=22-2.5=12\)
\(\Rightarrow A=-\sqrt{12}\)(Chú ý \(A< 0\))
`a)sqrt{8-2sqrt7}+sqrt{16-6sqrt7}`
`=sqrt{(sqrt7-1)^2}+sqrt{(3-sqrt7)^2}`
`=sqrt7-1+3-sqrt7=2`
`b)sqrt{(sqrt7-1)^2}-sqrt{11+4sqrt7}`
`=sqrt7-1-sqrt{(2+sqrt7)^2}`
`=sqrt7-1-2-sqrt7=-3`
a, \(=\sqrt{7-2\sqrt{7}+1}+\sqrt{7-2.3\sqrt{7}+9}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}+\sqrt{\left(3-\sqrt{7}\right)^2}=\left|\sqrt{7}-1\right|+\left|3-\sqrt{7}\right|\)
\(=\sqrt{7}-1+3-\sqrt{7}=2\)
\(b,=\left|\sqrt{7}-1\right|-\sqrt{7+2.2\sqrt{7}+4}\)
\(=\left|\sqrt{7}-1\right|-\sqrt{\left(\sqrt{7}+2\right)^2}=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+2\right|\)
\(=\sqrt{7}-1-\sqrt{7}-2=-3\)