Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (km/h) là vận tốc dự định mà người đó định đi (x > 0)
=> thời gian mà người đó định đi là: \(\dfrac{100}{x}\)(h)
Quãng đường người đó đi được trong 15 phút là: \(0,25x\)(km)
=> Quãng đường còn lại người đó đi là: 100 - 0,25x (km)
Vận tốc người lái xe đi trên quãng đường còn lại là: \(\dfrac{9}{2}x\)(km/h)
=> Thời gian xe đi trên quãng đường còn lại là: \(\dfrac{100-0,25x}{\dfrac{9}{8}x}=\dfrac{800}{9x}-\dfrac{2}{9}\)(h)
Do người đó đi 15 phút xe bị hỏng phải sửa mất 15 phút, thời gian người đó đi trên quãng đường còn lại là \(\dfrac{800}{9x}-\dfrac{2}{9}\) (h) và thời gian mà người đó định đi là 100/x (h) nên ta có pt:
\(\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{800}{9x}-\dfrac{2}{9}=\dfrac{100}{x}\)
<=> \(\dfrac{5}{18}=\dfrac{100}{9x}\) => x = 40
Vậy vận tốc dự định mà người đó định đi là 40km/h
Gọi độ dài AB là x
Thời gian dự kiến là x/12
Thời gian thực tế là 1/2+\(\dfrac{x-6}{30}\)
Theo đề, ta có: \(\dfrac{x}{12}-\dfrac{1}{2}-\dfrac{x-6}{30}=\dfrac{3}{4}\)
=>5x-30-2(x-6)=45
=>5x-30-2x+12=45
=>3x-18=45
=>3x=63
=>x=21
Gọi C là địa điểm người lái xe máy dừng lại để sửa xe :
Quãng đường AC xe máy đi với vận tốc 35km/h và đi trong 1 giờ :
⇒ S(AC) = 35.1 = (km).
Gọi quãng đường BC dài là x (km) (x>0)
Vận tốc dự tính đi trên BC là : 35km/h
=> Thời gian dự tính đi hết quãng đường BC : x/35
Thực tế do phải sửa xe nên xe máy đi hết quãng đường BC với vận tốc : 35+5=40 (km/h)
⇒ Thời gian thực tế xe máy đi quãng đường BC là: x/40 (giờ).
Thời gian chênh nhau giữa dự tính và thực tế chính là thời gian xe máy phải sửa là 30 phút = 1/2 (giờ).
Do đó ta có phương trình:
x/35 - x/40 =1/2
<=> 8x/280 - 7x/280 = 140/280
<=> 8x - 7x = 140
⇔ x = 140 (thỏa mãn) nên quãng đường BC là 140 (km).
Vậy quãng đường AB là:
S(AB) = S(AC) + S(BC) = 35 + 140 = 175 (km).
Nhớ tick nhé =)))