K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

\(a,3x^2-4y+4x-3y^2\)

\(=3x^2-3y^2+4x-4y\)

\(=3\left(x^2-y^2\right)+4\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)+4\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+3y+4\right)\)

\(b,2x^2-6xy+5x-15y\)

\(=2x\left(x-3y\right)+5\left(x-3y\right)\)

\(=\left(2x+5\right)\left(x-3y\right)\)

\(c,10ax-5ay-2x+y\)

\(=5a\left(2x-y\right)-\left(2x-y\right)\)

\(=\left(5a-1\right)\left(2x-y\right)\)

14 tháng 8 2017

cảm ơn bạn

1 tháng 7 2018

\(a)\) \(x^2-2x-4y^2-4y\)

\(=\)\(\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)

\(=\)\(\left(x-1\right)^2-\left(2y+1\right)^2\)

\(=\)\(\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)

\(=\)\(\left(x-2y-2\right)\left(x+2y\right)\)

\(=\)\(2\left(x-y\right)\left(x+2y\right)\)

Chúc bạn học tốt ~ 

a) Ta có x- 2x - 4y- 4y

= x2 - 2x + 1 - 4y2 - 4y - 1 

= (x - 1)2 - (4y2 + 4y + 1)

=  (x - 1)2 - (2y + 1)2

= (x - 1 - 2y  - 1)(x - 1 + 2y + 1)

= (x  - 2y - 1)(x + 2y)

23 tháng 9 2017

x2y-xy2-3x+3y

=(x2y-xy2)-(3x-3y)

=xy(x-y)-3(x-y)

=(x-y).(xy-3)

19 tháng 10 2020

a) x2 - 3x + 2 = x2 - x - 2x + 2 = x( x - 1 ) - 2( x - 1 ) = ( x - 1 )( x - 2 )

b) 2x2 - x - 6 = 2x2 - 4x + 3x - 6 = 2x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 2x + 3 )

c) x2 - 5x - 6 = x2 + x - 6x - 6 = x( x + 1 ) - 6( x + 1 ) = ( x + 1 )( x - 6 )

d) x2 + 8x + 7 = x2 + x + 7x + 7 = x( x + 1 ) + 7( x + 1 ) = ( x + 1 )( x + 7 )

e) 3x2 + 2x - 5 = 3x2 - 3x + 5x - 5 = 3x( x - 1 ) + 5( x - 1 ) = ( x - 1 )( 3x + 5 )

f) 4x2 - 3x - 1 = 4x2 - 4x + x - 1 = 4x( x - 1 ) + ( x - 1 ) = ( x - 1 )( 4x + 1 )

19 tháng 10 2020

\(x^2-3x+2=x^2-x-2x+2=\left(x-1\right)\left(x-2\right)\)

b, \(2x^2-x-6=2x^2-4x+3x-6=\left(x-2\right)\left(2x+3\right)\)

c, \(x^2-5x-6=x^2+x-6x-6=\left(x+1\right)\left(x-6\right)\)

d, \(x^2+8x+7=x^2+x+7x+7=\left(x+1\right)\left(x+7\right)\)

e, \(3x^2+2x-5=3x^2-3x+5x-5=\left(x-1\right)\left(3x+5\right)\)

f, \(4x^2-3x-1=4x^2-4x+x-1=\left(x-1\right)\left(4x+1\right)\)

18 tháng 8 2020

a)

\(=x^2\left(2x+3\right)+\left(2x+3\right)\)

\(=\left(x^2+1\right)\left(2x+3\right)\)

b)

\(=a\left(a-b\right)+a-b\)

\(=\left(a+1\right)\left(a-b\right)\)

c)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left(x+1-y\right)\left(x+1+y\right)\)

d)

\(=x^3\left(x-2\right)+10x\left(x-2\right)\)

\(=x\left(x^2+10\right)\left(x-2\right)\)

e)

\(=x\left(x^2+2x+1\right)\)

\(=x\left(x+1\right)^2\)

f)

\(=y\left(x+y\right)-\left(x+y\right)\)

\(=\left(y-1\right)\left(x+y\right)\)

18 tháng 8 2020

a,2x3+3x2+2x+3

=(2x3+2x)+(3x2+3)

=2x(x2+1)+3(x2+1)

=(x2+1)(2x+3)

b,a2-ab+a-b

=(a2-ab)+(a-b)

=a(a-b)+(a-b)

=(a-b)(a+1)

c,2x2+4x+2-2y2

=2(x2+2x+1-y2)

=2[(x2+2x+1)-y2 ]

=2[(x+1)2-y2 ]

=2(x+1-y)(x+1+y)

d,x4-2x3+10x2-20x

=(x4-2x3)+(10x2-20x)

=x3(x-2)+10x(x-2)

=(x-2)(x3+10x)

=(x-2)[x(x2+10)]

e,x3+2x2+x

=x(x2+2x+1)

=x(x+1)2

f,xy+y2-x-y

=(xy+y2)-(x-y)

=y(x+y)-(x+y)

=(x+y)(y-1)

19 tháng 10 2020

a) 5x3 - 40 = 5( x3 - 8 ) = 5( x - 2 )( x2 + 2x + 4 )

b) x2z + 4xyz + 4y2z = z( x2 + 4xy + 4y2 ) = z( x + 2y )2

c) 4x2 - y2 - 6x + 3y = ( 4x2 - y2 ) - ( 6x - 3y ) = ( 2x - y )( 2x + y ) - 3( 2x - y ) = ( 2x - y )( 2x + y - 3 )

d) x2 + 2x - 4y2 + 1 = ( x2 + 2x + 1 ) - 4y2 = ( x + 1 )2 - ( 2y )2 = ( x - 2y + 1 )( x + 2y + 1 )

e) 3x2 - 3y2 - 12x + 12y = 3( x2 - y2 - 4x + 4y ) = 3[ ( x2 - y2 ) - ( 4x - 4y ) ] = 3[ ( x - y )( x + y ) - 4( x - y ) ] = 3( x - y )( x + y - 4 )

f) x3 + 5x2 + 4x + 20 = x2( x + 5 ) + 4( x + 5 ) = ( x + 5 )( x2 + 4 )

g) x3 - x2 - 25x + 25 = x2( x - 1 ) - 25( x - 1 ) = ( x - 1 )( x2 - 25 ) = ( x - 1 )( x - 5 )( x + 5 )

19 tháng 10 2020

a) \(5x^3-40=5\left(x^3-8\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)

b) \(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)=z\left(x+2y\right)^2\)

c) \(4x^2-y^2-6x+3y=\left(4x^2-y^2\right)-\left(6x-3y\right)\)

\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

d) \(x^2+2x-4y^2+1=x^2+2x+1-4y^2\)

\(=\left(x+1\right)^2-4y^2=\left(x+2y+1\right)\left(x-2y+1\right)\)

e) \(3x^2-3y^2-12x+12y=3\left(x^2-y^2-4x+4y\right)\)

\(=3\left[\left(x^2-y^2\right)-\left(4x-4y\right)\right]=3\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)

\(=3\left(x-y\right)\left(x+y+4\right)\)

f) \(x^3+5x^2+4x+20=\left(x^3+5x^2\right)+\left(4x+20\right)\)

\(=x^2.\left(x+5\right)+4\left(x+5\right)=\left(x^2+4\right)\left(x+5\right)\)

g) \(x^3-x^2-25x+25=\left(x^3-x^2\right)-\left(25x-25\right)\)

\(=x^2\left(x-1\right)-25\left(x-1\right)=\left(x-1\right)\left(x^2-25\right)\)

\(=\left(x-1\right)\left(x-5\right)\left(x+5\right)\)

8 tháng 10 2020

a) ax2 - 2bxy + 2bx2 - axy

= ( ax2 - axy ) + ( 2bx2 - 2bxy )

= ax( x - y ) + 2bx( x - y )

= ( x - y )( ax + 2bx )

= x( x - y )( a + 2b )

b) x2 + 2x - 4y2 + 8y - 3 < đã sửa >

= ( x2 + 2x + 1 ) - ( 4y2 - 8y + 4 )

= ( x + 1 )2 - ( 2y - 2 )2 

= [ ( x + 1 ) - ( 2y - 2 ) ][ ( x + 1 ) + ( 2y - 2 ) ]

= ( x + 1 - 2y + 2 )( x + 1 + 2y - 2 )

= ( x - 2y + 3 )( x + 2y - 1 )

c) x4 + 5x3 + 20x - 16

= x4 + 5x3 + 4x2 - 4x2 + 20x - 16

= ( x4 + 5x3 - 4x2 ) + ( 4x2 + 20x - 16 )

= x2( x2 + 5x - 4 ) + 4( x2 + 5x - 4 )

= ( x2 + 5x - 4 )( x2 + 4 )

2 tháng 7 2018

a,\(x^2y^2+y^3+zx^2+yz=\left(x^2y^2+y^3\right)+\left(zx^2+yz\right)\)

\(=y^2\left(x^2+y\right)+z\left(x^2+y\right)\)

\(=\left(y^2+z\right)\left(x^2+y\right)\)

b,\(x^4+2x^3-4x-4=x^4+2x^3+x^2-x^2-4x-4\)

\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

c,\(x^3+2x^2y-x-2y=\left(x^3+2x^2y\right)-\left(x+2y\right)\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x^2-1\right)\left(x+2y\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+2y\right)\)

7 tháng 8 2016

a) 2x3-5x2+8x-3

=2x3-x2-4x2+2x+6x-3

=x2(2x-1)-2x(2x-1)+3(2x-1)

=(2x-1)(x2-2x+3)

6 tháng 9 2017

a,2x3-5x2+8x-3

=2x3-x2-4x2+2x+6x-3

=x2(2x-1)-2x(2x-1)+3(2x-1)

=(2x-1)(x2-2x+3) 

19 tháng 8 2020

Bài làm:

a) \(x^2-2xy+y^2-zx+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(\left(x-y\right)\left(x-y-z\right)\)

19 tháng 8 2020

a/ \(x^2-2xy+y^2-zx+yz.\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c/ \(x^2-y^2-2x-2y.\)

\(=x^2-2x+1-y^2-2y-1\)

\(=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)

\(=\left(x-1\right)^2-\left(y+1\right)^2\)

\(=\left(x-1+y+1\right)\left(x-1-y-1\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)