Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình thì phân tích ra thành thế này
gọi số cần tìm là \(ab\) có:
\(ab=x^3;a+b=x^2\)(\(x\) là số tự nhiên mà khi lập phương lên thì bằng \(ab\), khi bình phương lên thì bằng \(a+b\))
Từ đó ta có: \(10a+b=x^3\)
\(a+b=x^2\)
Rồi suy ra được ab thì phải, mình không biết có đúng không nữa, nếu mà các bước mình làm đúng thì bạn nghiên cứu thêm nhé
Gọi số điểm của tổ 1 là a ; số điểm của tổ 2 là b ; số điểm của tổ 3 là c (a;b;c .> 0)
Ta có \(\frac{a}{3}=\frac{b}{4}=\frac{c}{2}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{2}=k\Rightarrow\hept{\begin{cases}a=3k\\b=4k\\c=2k\end{cases}}\)
Lại có 5a2 + 7c2 - b2= 1282500
<=> 5(3k)2 - (4k)2 + 7(2k)2 = 1282500
=> 45k2 - 16k2 + 28k2 = 1282500
=> k2(45 - 16 + 28) = 1282500
=> k2.57 = 1282500
=> k2 = 22500
=> k2 = 1502
=> k = \(\pm\)150
=> k = 150 (Vì a ; b ; c > 0)
Khi k = 150 => a = 450 ; b = 600; c = 300
Vậy nhóm 1 có 450 điểm ; nhóm 2 có 600 điểm ; nhóm 3 co 300 điểm
2) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{11a+7b}{11a-7b}=\frac{11bk+7b}{11bk-7b}=\frac{b\left(11k+7\right)}{b\left(11k-7\right)}=\frac{11k+7}{11k-7}\left(1\right)\);
\(\frac{11c+7d}{11c-7d}=\frac{11dk+7d}{11dk-7d}=\frac{d\left(11k+7\right)}{d\left(11k-7\right)}=\frac{11k+7}{11k-7}\left(2\right)\)
Từ (1) (2) => \(\frac{11a+7b}{11a-7b}=\frac{11c+7d}{11c-7d}\)(đpcm)
2x^3-3x^2=0
<=>x^2(2x-3)=0
<=>x=0 or x=3/2