K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2020

\(\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)

<=> \(xy+\sqrt{x^2+1}\sqrt{y^2+1}-1=-x\sqrt{x^2+1}-y\sqrt{y^2+1}\)--->Bình phương 2 vế:

\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+1+2xy\sqrt{x^2+1}\sqrt{y^2+1}-2xy-2\sqrt{x^2+1}\sqrt{y^2+1}=\)

                                                                                                     \(x^2\left(x^2+1\right)+y^2\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}\)

<=>\(2\left(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\right)=\left(x^2-y^2\right)^2\ge0\)=>\(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\ge0\)

<=>\(1-xy\ge\sqrt{x^2+1}\sqrt{y^2+1}>0\)---> Bình phương 2 vế:

\(1+x^2y^2-2xy\ge\left(x^2+1\right)\left(y^2+1\right)\)<=>\(0\ge\left(x+y\right)^2\ge0\)<=>\(x+y=0\Leftrightarrow x=-y\Rightarrow x^2=y^2\)

--> Thay vào A---> \(A=\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)

15 tháng 10 2021

1: \(A=\dfrac{x-2\sqrt{xy}+y}{x-y}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

2: Thay \(x=3+2\sqrt{2}\) và \(y=3-2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Bạn cần làm gì với biểu thức này?
 

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

29 tháng 7 2015

sửa theo cách thứ nhất bạn!!

25 tháng 7 2016

Đề đúng : Cho \(a=xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) , \(b=x\sqrt{1+y^2}+y\sqrt{1+x^2}\). Hãy tính b theo a, biết x,y> 0

Giải : 

Ta có : \(a^2=\left(xy\right)^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(=x^2+y^2+2x^2y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a^2-1\)

Vậy \(b=\sqrt{a^2-1}\)(vì x,y> 0 nên b > 0)

25 tháng 7 2016

khó quá đi em mới học lớp 6 thôi hu hu 

<img class="irc_mi i5I_Ps3Xg92k-pQOPx8XEepE" alt="" style="margin-top: 100px;" src="http://dungfacebook.net/wp-content/uploads/2015/11/622.jpg" width="304" height="196">