\(\frac{11}{29}+\frac{9}{17}+\frac{10}{19}\). Ch...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

Ta có: Trong 3 phân số thì \(\frac{9}{17}\)là phân số lớn nhất

\(\Rightarrow\frac{9}{17}+\frac{9}{17}+\frac{9}{17}>\frac{11}{29}+\frac{9}{17}+\frac{10}{19}\)

\(\Rightarrow\frac{9}{17}\times3>A\)

\(\frac{9}{17}\times3=\frac{27}{17}< \frac{34}{17}=2\)

\(\Rightarrow2>\frac{9}{17}\times3>A\)

\(\Rightarrow A< 2\)

28 tháng 3 2017

Ta có : Tất cả số trên đều < 1

3 số < 1 cộng lại thì < 2

Thế thôi

28 tháng 3 2017

ta co 2=29/29+17/17+19/19

vi 11<29 =>11/29<29/29  (1)

   9<17 =>9/17<17/17      (2)

    10<19 =>10/19<19/19  (3)

tu (1),(2),(3) =>11/29+9/17+10/19<29/29+17/17+19/19

                  =>A<2

27 tháng 7 2019

a) \(A=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{100}}\)

\(\Rightarrow3A-A=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{301}{3^{99}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+...+\frac{301}{3^{100}}\right)\)

\(\Rightarrow2A=4+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{301}{3^{100}}\)

Đặt \(F=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3F=3+1+...+\frac{1}{3^{97}}\)

\(\Rightarrow3F-F=\left(3+...+\frac{1}{3^{97}}\right)-\left(1+...+\frac{1}{3^{98}}\right)\)

\(\Rightarrow2F=3-\frac{1}{3^{98}}< 3\)

\(\Rightarrow F< \frac{3}{2}\)

\(\Rightarrow2A< 4+\frac{3}{2}\)

\(\Rightarrow2A< \frac{11}{2}\)

\(\Rightarrow A< \frac{11}{4}\left(đpcm\right)\)

27 tháng 7 2019

2. \(B=\frac{11}{3}+\frac{17}{3^2}+\frac{23}{3^3}+...+\frac{605}{3^{100}}\)

\(\Rightarrow3B=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\)

\(\Rightarrow3B-B=\left(11+...+\frac{605}{3^{99}}\right)-\left(\frac{11}{3}+...+\frac{605}{3^{100}}\right)\)

\(\Rightarrow2B=11+2+\frac{2}{3}+...+\frac{2}{3^{98}}-\frac{605}{3^{100}}\)

Đặt \(D=2+\frac{2}{3}+...+\frac{2}{3^{98}}\)

\(\Rightarrow3D=6+2+...+\frac{2}{3^{97}}\)

\(\Rightarrow2D=6-\frac{2}{3^{98}}< 6\)( làm tắt )

\(\Rightarrow2D< 6\)

\(\Rightarrow D< 3\)

\(\Rightarrow2B< 11+3\)

\(\Rightarrow2B< 14\)

\(\Rightarrow B< 7\left(đpcm\right)\)

23 tháng 3 2020

Ta có thể thấy:

\(\frac{11}{29};\frac{9}{17};\frac{10}{19}< \frac{2}{3}\)

\(\Rightarrow\frac{11}{29}+\frac{9}{17}+\frac{10}{19}< 3\times\frac{2}{3}=2\)

Chúc bn hok tốt

21 tháng 4 2018

Đề gõ sai, xin sửa lại:
Chứng minh:

\({1 \over {11}^2} + {1 \over {12}^2} + {1 \over {13}^2} + {1 \over {14}^2} + ... + {1 \over {100}^2}<{1 \over {10}}\)

Cảm ơn

21 tháng 4 2018

Đặt biểu thức là A     ta có:

1/11^2 < 1/10.11 = 1/10 - 1/11

1/12^2 < 1/11.12 = 1/11 - 1/12

1/13^2 < 1/12.13 = 1/12 - 1/13

. . . . . . . . . 

1/100^2 < 1/99.100 = 1/99 - 1/100

 => A < 1/10 - 1/11 + 1/11 - 1/12 + 1/12 - 1/13 + . . . .+ 1/99 - 1/100

  => A < 1/10 -  1/100

 => A < 1/10

                Bạn nhớ k cho mình nha

8 tháng 3 2019

https://olm.vn/hoi-dap/detail/46893782605.html

12 tháng 5 2016

http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2

12 tháng 5 2016

2.

= 1/2.7 + 1/7.12 + 1/12.17 + ... + 1/2002.2007

= 1/2 - 1/7 + 1/7 - 1/12 + 1/12 - 1/17 + ... + 1/2002 - 1/2007

= 1/2 - 1/2007

= 2007/4014 - 2/4014

= 2005/4014