Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{11n-1}{5}\in Z\)thì \(11n-1\in B\left(5\right)\)
\(\Leftrightarrow11n-1\in\left\{0;5;10;15;...\right\}\)
\(\Leftrightarrow11n\in\left\{1;6;11;16;...\right\}\)
\(\Leftrightarrow n\in\left\{\frac{1}{11};\frac{6}{11};1;16;11\right\}\)
Vậy ..........
Theo đề ra: Để \(\frac{11n-1}{5}\)là một số nguyên thì \(11n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(11n-1=\left(-1\right)\Rightarrow11n=\left(-1\right)+1\Rightarrow11n=0\Rightarrow n=0\)(Thoả mãn)
Trường hợp 2: \(11n-1=1\Rightarrow11n=1+1\Rightarrow11n=2\Rightarrow n=\frac{2}{11}\)(Loại)
Trường hợp 3: \(11n-1=\left(-5\right)\Rightarrow11n=\left(-5\right)+1\Rightarrow11n=-4\Rightarrow n=\frac{-4}{11}\)(Loại)
Trường hợp 4: \(11n-1=5\Rightarrow11n=5+1\Rightarrow11n=6\Rightarrow n=\frac{6}{11}\)(Loại)
1)\(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3n-3}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)
Để \(P\in Z\Rightarrow3+\frac{5}{n-1}\in Z\Rightarrow\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)\)
n - 1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy để P nguyên thì \(n\in\left\{-4;0;2;6\right\}\)
2) \(\left(-1,5\right)^2:2\frac{1}{5}-3,15=2,25:2,2-3,15=4,95-3,15=1,8\)
ta đặt
\(\frac{11n-1}{5}=k\in Z\Leftrightarrow11n-1=5k\)
\(\Leftrightarrow11\left(n-1\right)=5\left(k-2\right)\Rightarrow n-1\text{ chia hết cho 5}\)
nên n có dạng : \(n=5a+1\text{ với }a\in Z\)