Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để cm ˆACE=BCF^, ta gấp đôi các góc trên bằng cách vẽ H đối xứng với E qua AC, vẽ K đối xứng với F qua BC. Cần phải cm ˆHCE=FCK^. Muốn vậy ta sẽ cm ˆHCF=ECK^ bằng cách cm △HCF=△ECK
2 tam gíác này đã có HC=EC, CF=CK. Cần cm FH=KE.
Ta tạo ra 1 đoạn thẳng trung gian: Vẽ I đối xứng với E qua AB. Lần lượt cm:
△FAH=△FAI(c-g-c) suy ra FH=FI, △IBF=△EBK(c-g-c) suy ra FI=EK
Bài toán này rất hay, cô sẽ giải thích cho em nhé :)
Xét tam giác FAH và tam giác FAI có:
AI = AH ( Vì cùng bằng AE).
AF chung.
Ta cần chứng minh góc FAI = góc HAF.
Gọi giao điểm AB với IE là M, của AC với EH là N.
Khi đó ta có góc FAI = góc IAM + MAE + EAF = góc EAF + 2 góc FAN. (1)
góc HAF = góc FAN + NAH, mà góc NAH = góc EAF + góc FAN nên góc HAF = góc EAF + 2 góc FAN. (2)
Từ (1), (2) suy ra góc FAI = góc HAF.
Vậy tam giác FAI bằng tam goác FAH (c-g-c).
và đây là hình,nó có vẻ hơi xấu và sai 1 số chỗ nhỏ bạn thông cảm
AD/DB=AM/MB
AE/EC=AM/MC
mà MB=MC
nên AD/DB=AE/EC
=>DE//BC
Để DE là đừog trung bình của ΔABC thì AD/DB=AE/EC=1
=>AM/MB=AM/MC=1
=>ΔABC vuông tại A
Để cm ˆACE=BCF^, ta gấp đôi các góc trên bằng cách vẽ H đối xứng với E qua AC, vẽ K đối xứng với F qua BC. Cần phải cm ˆHCE=FCK^. Muốn vậy ta sẽ cm ˆHCF=ECK^ bằng cách cm △HCF=△ECK
2 tam gíác này đã có HC=EC, CF=CK. Cần cm FH=KE.
Ta tạo ra 1 đoạn thẳng trung gian: Vẽ I đối xứng với E qua AB. Lần lượt cm:
△FAH=△FAI(c-g-c) suy ra FH=FI, △IBF=△EBK(c-g-c) suy ra FI=EK