Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tìm 3 cặp tam giác đồng dạng với tam giác DEF, ta có thể sử dụng các định lý đồng dạng trong tam giác.
- Tam giác DHE đồng dạng với tam giác DEF Ta có:
- Góc D của tam giác DEF bằng góc D của tam giác DHE (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE)
- Góc E của tam giác DEF bằng góc H của tam giác DHE (do HE là đường cao của tam giác DHE, nên góc HED vuông góc với DE)
- Từ hai quan sát trên, ta suy ra tam giác DHE đồng dạng với tam giác DEF theo định lý góc-góc-góc.
- Tam giác EFD đồng dạng với tam giác DEF Ta có:
- Tam giác EFD cũng là tam giác vuông tại D, nên góc D bằng góc D của tam giác DEF.
- Từ đó, ta có hai góc D giống nhau ở hai tam giác, còn lại là góc E và góc F, ta có:
EF/DF = (DE + DF)/DF = (6+8)/8 = 7/4
ED/DF = DE/DF = 6/8 = 3/4
- Từ hai tỉ lệ này, ta suy ra tam giác EFD đồng dạng với tam giác DEF theo định lý góc - cân - góc.
- Tam giác EHD đồng dạng với tam giác DEF Ta có:
- Góc D của tam giác DEF bằng góc H của tam giác EHD (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE; HE là đường cao của tam giác EHD, nên góc HES vuông góc với ED; do đó ta có góc H bằng góc D)
- Góc E của tam giác DEF bằng góc E của tam giác EHD (do cả hai tam giác đều chứa cạnh ED)
- Từ hai quan sát trên, ta suy ra tam giác EHD đồng dạng với tam giác DEF theo định lý góc-góc-góc.
Vậy ta đã tìm được 3 cặp tam giác đồng dạng với tam giác DEF, đó là: DHE, EFD, EHD.
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
a) xét ΔHED và ΔDEF có
\(\widehat{EHD}=\widehat{EDF}=\)90o
\(\widehat{E} chung\)
=> ΔHED ∼ ΔDEF (gg)
b) Xét ΔDEF có \(\widehat{D}=\)90o
=> DE2+DF2=EF2
=>62+82=EF2
=> EF=10 cm
SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10
=> DH =4,8 cm
c) Xét ΔDEH có \(\widehat{EHD}=90\)o
=> HD2.HE2=ED2
=>4.82+HE2=62
=> HE=3.6
ta lại có DI là phân giác
=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)
=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2
=> IH=EH-EI=3.6-2=1.6
a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có
\(\widehat{HED}\) chung
Do đó: ΔHED\(\sim\)ΔDEF(g-g)
a: Xét ΔEHD vuông tại H và ΔEDF vuông tại D có
góc E chung
=>ΔEHD đồng dạng với ΔEDF
Xét ΔFHD vuông tại H và ΔFDE vuông tại D có
góc F chung
=>ΔFHD đồng dạng với ΔFDE
Xét ΔHDE vuông tại H và ΔHFD vuông tại H có
góc HDE=góc HFD
=>ΔHDE đồng dạng với ΔHFD
b: EF=căn 6^2+8^2=10cm
DH=6*8/10=4,8cm
HE=6^2/10=3,6cm
HF=10-3,6=6,4cm