\(\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}\) + \(\dfrac{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

 

a: ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\\a< >b\end{matrix}\right.\)

b: \(M=\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{b}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{b\left(a+\sqrt{ab}\right)+\sqrt{b}\left(a-\sqrt{ab}\right)}{a^2-ab}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(a-b\right)}\cdot\dfrac{ab+b\sqrt{ab}+a\sqrt{b}-b\sqrt{a}}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(\sqrt{a}-\sqrt{b}\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}\left(\sqrt{ab}+b+\sqrt{a}-\sqrt{b}\right)}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{a\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2}\)

\(=\dfrac{2\sqrt{a}\left(\sqrt{a}+\sqrt{b}-1\right)+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+2\sqrt{ab}-2\sqrt{a}+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}-\sqrt{a}+b-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}+b-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{\left(2\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2\sqrt{a}+\sqrt{b}-1}{2a}\)

Giả sử như a=0,1 và b=0,11 thì M<0 nha bạn

=>Đề này sai rồia: ĐKXĐ: 

b: \(M=\dfrac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{b}{a-\sqrt{ab}}+\dfrac{\sqrt{b}}{a+\sqrt{ab}}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{b\left(a+\sqrt{ab}\right)+\sqrt{b}\left(a-\sqrt{ab}\right)}{a^2-ab}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(a-b\right)}\cdot\dfrac{ab+b\sqrt{ab}+a\sqrt{b}-b\sqrt{a}}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{a\left(\sqrt{a}-\sqrt{b}\right)\cdot\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}\left(\sqrt{ab}+b+\sqrt{a}-\sqrt{b}\right)}{2\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{a\left(\sqrt{a}+\sqrt{b}\right)}\cdot\dfrac{\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2}\)

\(=\dfrac{2\sqrt{a}\left(\sqrt{a}+\sqrt{b}-1\right)+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+2\sqrt{ab}-2\sqrt{a}+\sqrt{ab}+b+\sqrt{a}-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}-\sqrt{a}+b-\sqrt{b}}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2a+3\sqrt{ab}+b-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{\left(2\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)-\left(\sqrt{a}+\sqrt{b}\right)}{2a\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2\sqrt{a}+\sqrt{b}-1}{2a}\)

Giả sử như a=0,1 và b=0,11 thì M<0 nha bạn

=>Đề này sai rồi

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

b: 

1: ĐKXĐ: a>0; a<>1

2: \(A=\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a}{\sqrt{a}+1}\)

\(=\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\cdot\dfrac{a}{\sqrt{a}+1}\)

\(=\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a}{\sqrt{a}+1}=\sqrt{a}\left(\sqrt{a}-1\right)\)

3: \(A=a-\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu '=' xảy ra khi a=1/4

5 tháng 7 2018

\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)

\(\Leftrightarrow3< 1\) ( Vô lý )

\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)

\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)

\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)

\(\Leftrightarrow2b-2\sqrt{ab}< 0\)

\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)

Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)

\(\RightarrowĐpcm.\)

\(2a.\) Áp dụng BĐT Cauchy , ta có :

\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)

\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)

\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :

\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)

5 tháng 7 2018

\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)

\(\Leftrightarrow x-4=a^2\)

\(\Leftrightarrow x=a^2+4\left(TM\right)\)

\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)

\(\Leftrightarrow x+4=x^2+4x+4\)

\(\Leftrightarrow x^2+3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)

KL....

22 tháng 4 2017

a) \(\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{a}{b}}\) với a>0 và b>0

b) \(\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m-8mx+4mx^2}{81}}=\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m\left(2-2x+x^2\right)}{81}}\)

\(=\sqrt{\dfrac{4m^2\left(1-2x+x^2\right)}{81\left(1-2x+x^2\right)}}=\sqrt{\dfrac{4m^2}{81}}=\sqrt{\dfrac{2m}{9}}\)

AH
Akai Haruma
Giáo viên
27 tháng 1 2019

Lời giải:

Áp dụng BĐT AM-GM ngược dấu ta có:

\(A=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ac}}=\frac{ab}{\sqrt{c(a+b+c)+ab}}+\frac{bc}{\sqrt{a(a+b+c)+bc}}+\frac{ca}{\sqrt{b(a+b+c)+ac}}\)

\(=\frac{ab}{\sqrt{(c+a)(c+b)}}+\frac{bc}{\sqrt{(a+b)(a+c)}}+\frac{ca}{\sqrt{(b+a)(b+c)}}\)

\(\leq \frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)+\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)+\frac{1}{2}\left(\frac{ca}{b+a}+\frac{ca}{b+c}\right)\)

\(A\leq \frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}(b+a+c)=\frac{1}{2}\)

Vậy \(A_{\max}=\frac{1}{2}\) tại \(a=b=c=\frac{1}{3}\)

24 tháng 10 2018

giải hộ

28 tháng 10 2022

Bài 2: 

a: =>25x=35^2=1225

=>x=49

b: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

=>x+5=4

=>x=-1

a: \(=\dfrac{\sqrt{a}-1}{\sqrt{a}\left(a-\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{1}\)

\(=a-1\)

b: \(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}+\dfrac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\dfrac{\sqrt{ab}+b+\sqrt{ab}-b}{\sqrt{a}\left(a-b\right)}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}-1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}+\dfrac{1}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{1}{\sqrt{a}}\)

c: \(=\dfrac{a\sqrt{b}+b}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\sqrt{\dfrac{b\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(a+\sqrt{b}\right)^2}}\)

\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=b\)

b: \(B=\left(2-\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}-3}\right)\cdot\left(2-\dfrac{\sqrt{a}\left(5-\sqrt{b}\right)}{-\left(5-\sqrt{b}\right)}\right)\)

\(=\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)=4-a\)

c: \(C=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+2\right)\left(2-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)

\(=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\)

=4-x

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)