\(2x^4+3x^2+4\)

a) Tính P(0), P(1); P(-1),P(2); P(-2); P(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P\left(0\right)=2\cdot0^4+3\cdot0^2+4=4\)

\(P\left(1\right)=2\cdot1^4+3\cdot1^2+4=2+3+4=9\)

\(P\left(-1\right)=2\cdot\left(-1\right)^4+3\cdot\left(-1\right)^2+4=9\)

\(P\left(2\right)=2\cdot2^4+3\cdot2^2+4=32+18+4=54\)

\(P\left(-2\right)=2\cdot\left(-2\right)^4+3\cdot\left(-2\right)^2+4=54\)

22 tháng 5 2022

`P(0)=2.0^4+3.0^2+4=0+0+4=4`

`P(1)=2.1^4+3.1^2+4=2+3+4=9`

`P(-1)=2.(-1)^4+3.(-1)^2+4=2+3+4=9`

`P(2)=2.2^4+3.2^2+4=32+12+4=48`

`P(-2)=2.(-2)^4+3.(-2)^2+4=32+12+4=48`

`P([-2]/3)=2.([-2]/3)^4+3.([-2]/3)^2+4=32/81+4/3+4=464/81`

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)

4 tháng 7 2018

a)A=\(x^5-\dfrac{1}{2}x+7x^3-2x+\dfrac{1}{5}x^3+3x^4-x^5+\dfrac{2}{5}x^4+15\)

=\(=\dfrac{-5}{2}x+\dfrac{36}{5}x^3+\dfrac{17}{5}x^4+15\)

b)B=\(3x^2-10+\dfrac{2}{5}x^3+7x-x^2+8+7x^2\)

\(=9x^2+\dfrac{2}{5}x^3+7x+2\)

c)C=\(\dfrac{1}{7}x-2x^4+5x+6\)

4 tháng 7 2018

c)C=\(\dfrac{36}{7}x-2x^4+6\)

8 tháng 7 2018

câu a) \(A=3x^3+7x^2+3x-\left(\dfrac{1}{4}+3x^3\right)-3\dfrac{3}{4}\)

\(\Leftrightarrow A=3x^3+7x^2+3x-\dfrac{1}{4}-3x^3-\dfrac{15}{4}\)

\(\Leftrightarrow A=7x^2+3x-4\)

\(B=x\left(x^2-x+1\right)-\dfrac{1}{2}x^2\left(2x-4\right)-2\)

\(\Leftrightarrow B=x^3-x^2+x-x^3+2x^2-2\)

\(\Leftrightarrow B=x^2+x-2\)

câu b) chỉ cần thế \(x=-1\) vào biểu thức \(A\) \(\Rightarrow\) tính

và thế \(x=\dfrac{1}{2}\) vào biểu thức \(B\) \(\Rightarrow\) tính

câu c) ta có \(B+M=A\Leftrightarrow x^2+x-2+M=7x^2+3x-4\)

\(\Leftrightarrow M=7x^2+3x-4-\left(x^2+x-2\right)=6x^2+2x-2\)

câu d) ta có : \(\dfrac{x+5}{-3}=\dfrac{x}{2}\Leftrightarrow2\left(x+5\right)=-3x\Leftrightarrow2x+10=-3x\)

\(\Leftrightarrow5x=-10\Leftrightarrow x=-2\)

thế \(x=-2\) vào \(M=6x^2+2x-2=6.\left(-2\right)^2+2\left(-2\right)-2=18\)

24 tháng 4 2017

a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

__________________________________

P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

_________________________________________

P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

c)Thay x=0 vào đa thức P(x), ta có:

P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)

=0+0-0-0-0

=0

Vậy x=0 là nghiệm của đa thức P(x).

Thay x=0 vào đa thức Q(x), ta có:

Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)

=0+0-0+0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=\(\dfrac{-1}{4}\)

Vậy x=0 không phải là nghiệm của đa thức Q(x).

19 tháng 4 2017

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x53x2+7x49x3+x214xP(x)=x5−3x2+7x4−9x3+x2−14x

=x5+7x49x32x214x=x5+7x4−9x3−2x2−14x

Q(x)=5x4x5+x22x3+3x214Q(x)=5x4−x5+x2−2x3+3x2−14

=x5+5x42x3+4x214=−x5+5x4−2x3+4x2−14

b) P(x) + Q(x) = (x5+7x49x32x21

25 tháng 4 2017

a. P(x)+Q(x)=(3x4 + x3- x2- \(\dfrac{1}{4}\)x)+(3x4- 4x3+x2-\(\dfrac{1}{4}\))=6x4-3x3+\(\dfrac{1}{2}\)

Tương tự làm P(x)-Q(X) nhé !!!

b. Thay x = 0 vào đa thức P(x) ta có :

.....................................................

thay x = 0 vào đa thức Q(x) ta có:

......................................................

=> đpcm

27 tháng 11 2022

b: =>(3x-1)(3x+1)(2x+3)=0

hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: \(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{5}{6}+\dfrac{3}{4}=\dfrac{19}{12}\)

=>2x-1/3=19/12 hoặc 2x-1/3=-19/12

=>2x=23/12 hoặc 2x=-15/12=-5/4

=>x=23/24 hoặc x=-5/8

d: \(\Leftrightarrow-\dfrac{5}{6}\cdot x+\dfrac{3}{4}=-\dfrac{3}{4}\)

=>-5/6x=-3/2

=>x=3/2:5/6=3/2*6/5=18/10=9/5

e: =>2/5x-1/2=3/4 hoặc 2/5x-1/2=-3/4

=>2/5x=5/4 hoặc 2/5x=-1/4

=>x=5/4:2/5=25/8 hoặc x=-1/4:2/5=-1/4*5/2=-5/8

f: =>14x-21=9x+6

=>5x=27

=>x=27/5

h: =>(2/3)^2x+1=(2/3)^27

=>2x+1=27

=>x=13

i: =>5^3x*(2+5^2)=3375

=>5^3x=125

=>3x=3

=>x=1