K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tuổi học trò có biết bao chuyện buồn vui, hờn giận, nhớ nhung... rồi tất cả cũng trở thành những kỉ niệm đáng yêu đáng nhớ trong cuộc đời mỗi chúng ta. Với tôi, kỉ niệm không thể phai mờ trong tâm trí là ngày tổng kết năm học lớp Năm. Dường như đó cũng là một ngày tổng kết cấp học, để rồi từ đó, cuộc đời chúng tôi bước sang một trang mới. Ngày chia tay hội tụ bao tình...
Đọc tiếp

Tuổi học trò có biết bao chuyện buồn vui, hờn giận, nhớ nhung... rồi tất cả cũng trở thành những kỉ niệm đáng yêu đáng nhớ trong cuộc đời mỗi chúng ta. Với tôi, kỉ niệm không thể phai mờ trong tâm trí là ngày tổng kết năm học lớp Năm. Dường như đó cũng là một ngày tổng kết cấp học, để rồi từ đó, cuộc đời chúng tôi bước sang một trang mới. Ngày chia tay hội tụ bao tình cảm yêu mến xúc động dạt dào.
Tôi còn nhớ đó là chiều thứ ba. Hôm ấy, các bạn lớp tôi ai cũng đến dự đầy đủ. Ai nấy đều có vẻ mặt hớn hở vui tươi vàmặc đồng phục gọn gàng. Khi cả lớp đã đến hết, bạn lớp trưởng nhắc các bạn xếp lại bàn ghế ngay ngắn. Cô giáo bước vào lớp, chúng tôi đứng dậy chào. Cô mặc bộ quần áo thường ngày, nét mặt cô hiền hậu. Cô mời chúng tôi ngồi xuống và yêu cầu cả lớp trật tự để buổi lễ tổng kết được bắt đầu. Lúc nãy cả lớp còn ồn ào nhưng bây giờ đã im lặng ngay. Thoạt đầu, khi nghe cô khen ngợi thành tích chung của lớp ai cũng vui vẻ, hài lòng vì nghĩ rằng trong thành tích chung ấy có sự đóng góp của mình. Nhưng khi nghe cô chỉ ra những hạn chế còn tồn tại ai cũng cảm thấy xấu hổ vì chợt thấy bóng dáng mình trong đó. Một số bạn đã đứng lên nhận lỗi và hứa sẽ cố gắng sửa chữa để cô vui lòng. Nghe vậy cô giáo đã bớt lo lắng về chúng tôi, những học sinh trong mắt cô vẫn còn rất bé nhỏ ngây thơ, và cô nở một cụ cười rạng rỡ.
Tiếp đó, cô căn dặn chúng tôi một câu mà đến giờ tôi vẫn khắc ghi trong lòng: “Như vậy là năm học lớp Năm và cũng là năm năm dưới mái trường tiểu học đã trôi qua trong cuộc đời các em. Dù cô chỉ dạy các em một năm học cuối cấp nhưng cô nhận thấy các em đã rất cố gắng để đạt thành tích cao nhất trong suốt năm năm học. Tuy vẫn còn một sô bạn yếu kém chưa cố gắng nhưng cô tin các học sinh của cô sẽ có tự tin để bước vào một chặng đường vô cùng gian khổ, vất vả phía trước. Năm học tới, cô sẽ không còn dạy các em nữa nhưng cô hi vọng dù không có cô thì các em vẫn cố gắng trong học tập, lao động và nghe lời các thầy cô giáo mới. Cả lớp hãy hứa với cô đi!”. Nói đến đây thì cô dừng lại, những giọt nước mắt tràn ra trên hai má cô làm cho cả lớp không khỏi xúc động. Lớp chúng tôi là lớp đầu tiên mà cô làm chủ nhiệm. Với lớp, cô đã ân cần biết mấy, cô đã mang tất cả nhiệt huyết của tuổi trẻ để dạy dỗ và yêu thương chúng tôi. Bao nhiêu kỉ niệm về những ân nghĩa cô trò chợt ùa về. Vậy mà cô trò chúng tôi lại sắp phải xa nhau. Các bạn gái xúc động quá đã thút thít khóc. Tôi thì dù đã cố gượng cơn xúc động nhưng nước mắt cứ ứa ra ướt đẫm hai bên má. Cả lớp nghẹn ngào không ai nói được câu nào dù là để đáp lại lời cô. Cô giáo đã tin các học sinh yêu quý của cô sẽ có đủ vững vàng để tiến bước trên con đường này. Mai sau, khi lên cấp cao hơn, nếu gặp khó khăn, các em hãy về đây, cô sẵn sàng giúp đỡ các em và tiếp thêm sức mạnh để các em có thể vững tin trên con đường học tập. Cô tin ở các em!”. Những lời nói của cô thúc giục và làm cho chúng tôi vững tin hơn bao giờ hết. Tôi cảm thấy những lời ấy thật thấm thìa biết bao! Chúng như chiếc khăn mềm mại thấm nhanh những giọt nước mắt trên mỗi khuôn mặt chúng tôi. Rồi cô giáo tổ chức buổi liên hoan ngọt cuối cùng. Cô nói đây là buổi tổng kết nên mọi người hãy vui vẻ nói rồi cô hát tặng chúng tôi, kể cho chúng tôi nghe những câu chuyện cười. Thế là các bạn vui vẻ hẳn lên. Nắng vàng tươi trên sân ngày cuối cùng chúng tôi là học sinh tiểu học, không bỏ lỡ khoảnh khắc đẹp đẽ đó, chúng tôi mời cô ra chụp ảnh kỉ niệm. Buổi tổng kết ai nấy đều lưu luyến và điều hứa sẽ thi tốt để cô vui lòng.
Ngày tổng kết năm học lớp Năm đã qua từ rất lâu nhưng nó chất chứa nhiều tình cảm xúc động trong tuổi học trò của em. Giờ đây đã lớn khôn, nghĩ về ngày ấy, tôi không khỏi tiếc nuối nhưng nhiều hơn vẫn là quyết tâm học tập để xứng đáng với những kỉ niệm đẹp đẽ của tuổi thơ.

Hu hu mình muốn tuổi học trò kéo dài mải mãi

0
TRUYỆN KINH DỊ! The Queen's GuardVào năm 2012, một thành viên của đội Cận vệ Nữ Hoàng đang làm việc ở tòa tháp London nhận thấy rằng có một người phụ nữ nhợt nhạt cứ nhìn anh ta trong lúc anh ta đang canh gác. Người phụ nữ này đi theo anh ta vài ngày, lúc nào cũng lẩm bẩm những con số:10, 9, 8.Một tuần sau, người cận vệ nghe thấy tiếng gõ cửa trước nhà vào lúc 3 giờ sáng. Anh ra mở...
Đọc tiếp

TRUYỆN KINH DỊ!

The Queen's Guard

Vào năm 2012, một thành viên của đội Cận vệ Nữ Hoàng đang làm việc ở tòa tháp London nhận thấy rằng có một người phụ nữ nhợt nhạt cứ nhìn anh ta trong lúc anh ta đang canh gác. Người phụ nữ này đi theo anh ta vài ngày, lúc nào cũng lẩm bẩm những con số:

10, 9, 8.

Một tuần sau, người cận vệ nghe thấy tiếng gõ cửa trước nhà vào lúc 3 giờ sáng. Anh ra mở cửa thì thấy bạn gái mình, mặc dù 2 người đã ở với nhau cả đêm. Anh hoảng hồn chạy vào phòng ngủ của mình thì thấy người phụ nữ nhợt nhạt, lẩm bẩm những con số

7, 6, 5.

Vị cảnh vệ ngay lập tức gọi cảnh sát, nhưng khi cảnh sát tới thì họ không thấy người phụ nữ nhợt nhạt kia nữa, và cặp đôi lại tiếp tục đi ngủ. Vài ngày sau đó, người phụ nữ lại tiếp tục xuất hiện. Những con số tiếp tục lùi dần:

4, 3, 2.

Vào một buổi tối, Ashley, cháu gái của vị cận vệ đến thăm anh ta và ra chơi ở ngoài sân. Lần này, cô gái nhợt nhạt lại xuất hiện, bắt lấy đứa trẻ, và la hét:

0, 0, 0.

Lần này, cảnh sát đến kịp thời và bắt người phụ nữ. Cơn ác mộng có vẻ đã qua đi. Nhưng vài ngày sau, khi vị cận vệ tiễn cháu gái mình về, anh nghe tiếng cô bé thì thầm trên chuyến tàu:

10, 9, 8.

Penpal

Penpal là câu chuyện về một học sinh tiểu học và câu chuyện xung quanh quả bóng với lá thư, một hoạt động cậu bé tham gia với lớp mình. Nhưng khi những lá thư của bọn trẻ khác trở về, cậu bé nhận thấy rằng mình không nhận được hồi âm. Cho đến một ngày giáo viên của cậu bé đưa cho cậu một lá thư, mở ra một chuỗi các sự kiện đáng lo Hóa ra bức thư của cậu bé được tìm thấy bởi một người đàn ông đáng sợ, rình rập cậu mỗi ngày thậm chí là đã từng sống trong một không gian nhỏ dưới nhà cậu. Nhiều năm sau, kẻ theo dõi bắt cóc Josh, bạn thân nhất của cậu bé. Nhuộm tóc Josh cùng màu với cậu bé và sau đó giết luôn em gái của Josh. Sau đó, kẻ rình mò thao túng cha Josh để chôn vùi cả kẻ theo dõi và Josh, rồi họ có thể bên nhau mãi mãi ngại.

Psychosis

Psychosis là câu chuyện kể về John, một người đàn ông ngày càng trở nên hoang tưởng do việc thiếu tiếp xúc với người khác trong một khoảng thời gian dài. Anh ta cố gắng thuyết phục bạn bè đến và ghé thăm. Tuy nhiên, mọi người dường như luôn từ chối John hoặc offline. Cuối cùng anh nhận được cuộc gọi video từ một người bạn nhưng dường như có gì đó không ổn.

Anh bắt đầu tin rằng các thiết bị điện tử trong cuộc sống của mình đang bị kiểm soát bởi một thứ gọi là The Entity. The Entity có thể kiểm soát bất cứ thiết bị gì vào bất cứ lúc nào mà nó muốn. John cũng tin rằng tất cả những người giao tiếp với anh ấy đang nỗ lực để dụ John rời khỏi căn hộ của mình để trở nên bị ám như họ. Bởi vì The Entity cũng có thể kiểm soát con người thông qua đôi mắt của họ. Tuyệt vọng và rơi vào đường cùng, John tự đâm mù mắt mình. Cuối cùng, chúng ta biết rằng The Entity là có thật và đã tiếp quản, chiếm lấy tâm trí của mọi người mà John biết.

~ĐỌC TRUYỆN VUI VẺ NHA!~

0
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả...
Đọc tiếp

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]

Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả thuyết bằng các chứng minh toán học. Khi những cấu trúc toán học là mô hình tốt cho hiện thực, lúc đó suy luận toán học có thể cung cấp sự hiểu biết sâu sắc hay những tiên đoán về tự nhiên. Thông qua việc sử dụng những phương pháp trừu tượng và lôgic, toán học đã phát triển từ việc đếm, tính toán, đo lường, và nghiên cứu có hệ thống những hình dạng và chuyển động của các đối tượng vật lý. Con người đã ứng dụng toán học trong đời sống từ xa xưa. Việc tìm lời giải cho những bài toán có thể mất hàng năm, hay thậm chí hàng thế kỷ.[11]

Những lập luận chặt chẽ xuất hiện trước tiên trong nền toán học Hy Lạp cổ đại, đáng chú ý nhất là trong tác phẩm Cơ sở của Euclid. Kể từ những công trình tiên phong của Giuseppe Peano (1858–1932), David Hilbert (1862–1943), và của những nhà toán học khác trong thế kỷ 19 về các hệ thống tiên đề, nghiên cứu toán học trở thành việc thiết lập chân lý thông qua suy luận lôgic chặt chẽ từ những tiên đề và định nghĩa thích hợp. Toán học phát triển tương đối chậm cho tới thời Phục hưng, khi sự tương tác giữa những phát minh toán học với những phát kiến khoa học mới đã dẫn đến sự gia tăng nhanh chóng những phát minh toán học vẫn tiếp tục cho đến ngày nay.[12]

Toán học được sử dụng trên khắp thế giới như một công cụ thiết yếu trong nhiều lĩnh vực, bao gồm khoa học, kỹ thuật, y học, và tài chính. Toán học ứng dụng, một nhánh toán học liên quan đến việc ứng dụng kiến thức toán học vào những lĩnh vực khác, thúc đẩy và sử dụng những phát minh toán học mới, từ đó đã dẫn đến việc phát triển nên những ngành toán hoàn toàn mới, chẳng hạn như thống kê và lý thuyết trò chơi. Các nhà toán học cũng dành thời gian cho toán học thuần túy, hay toán học vị toán học. Không có biên giới rõ ràng giữa toán học thuần túy và toán học ứng dụng, và những ứng dụng thực tiễn thường được khám phá từ những gì ban đầu được xem là toán học thuần túy.[13]

Mục lục

1Lịch sử

2Cảm hứng, thuần túy ứng dụng, và vẻ đẹp

3Ký hiệu, ngôn ngữ, tính chặt chẽ

4Các lĩnh vực toán học

4.1Nền tảng và triết học

4.2Toán học thuần túy

4.2.1Lượng

4.2.2Cấu trúc

4.2.3Không gian

4.2.4Sự thay đổi

4.3Toán học ứng dụng

4.3.1Thống kê và những lĩnh vực liên quan

4.3.2Toán học tính toán

5Giải thưởng toán học và những bài toán chưa giải được

6Mối quan hệ giữa toán học và khoa học

7Xem thêm

8Chú thích

9Tham khảo

10Liên kết ngoài

Lịch sử[sửa | sửa mã nguồn]

📷Nhà toán học Hy Lạp Pythagoras (khoảng 570–495 trước Tây lịch), được coi là đã phát minh ra định lý Pythagore.Bài chi tiết: Lịch sử toán học📷Nhà toán học Ba Tư Al-Khwarizmi (Khoảng 780-850 TCN), người phát minh ra Đại số.

Từ "mathematics" trong tiếng Anh bắt nguồn từ μάθημα (máthēma) trong tiếng Hy Lạp cổ, có nghĩa là "thứ học được",[14] "những gì người ta cần biết," và như vậy cũng có nghĩa là "học" và "khoa học"; còn trong tiếng Hy Lạp hiện đại thì nó chỉ có nghĩa là "bài học." Từ máthēma bắt nguồn từ μανθάνω (manthano), từ tương đương trong tiếng Hy Lạp hiện đại là μαθαίνω (mathaino), cả hai đều có nghĩa là "học." Trong tiếng Việt, "toán" có nghĩa là tính; "toán học" là môn học về toán số.[15] Trong các ngôn ngữ sử dụng từ vựng gốc Hán khác, môn học này lại được gọi là số học.

Sự tiến hóa của toán học có thể nhận thấy qua một loạt gia tăng không ngừng về những phép trừu tượng, hay qua sự mở rộng của nội dung ngành học. Phép trừu tượng đầu tiên, mà nhiều loài động vật có được,[16] có lẽ là về các con số, với nhận thức rằng, chẳng hạn, một nhóm hai quả táo và một nhóm hai quả cam có cái gì đó chung, ở đây là số lượng quả trong mỗi nhóm.

Các bằng chứng khảo cổ học cho thấy, ngoài việc biết đếm những vật thể vật lý, con người thời tiền sử có thể cũng đã biết đếm những đại lượng trừu tượng như thời gian - ngày, mùa, và năm.[17]

Đến khoảng năm 3000 trước Tây lịch thì toán học phức tạp hơn mới xuất hiện, khi người Babylon và người Ai Cập bắt đầu sử dụng số học, đại số, và hình học trong việc tính thuế và những tính toán tài chính khác, trong xây dựng, và trong quan sát thiên văn.[18] Toán học được sử dụng sớm nhất trong thương mại, đo đạc đất đai, hội họa, dệt, và trong việc ghi nhớ thời gian.

Các phép tính số học căn bản trong toán học Babylon (cộng, trừ, nhân, và chia) xuất hiện đầu tiên trong các tài liệu khảo cổ. Giữa năm 600 đến 300 trước Tây lịch, người Hy Lạp cổ đã bắt đầu nghiên cứu một cách có hệ thống về toán học như một ngành học riêng, hình thành nên toán học Hy Lạp.[19] Kể từ đó toán học đã phát triển vượt bậc; sự tương tác giữa toán học và khoa học đã đem lại nhiều thành quả và lợi ích cho cả hai. Ngày nay, những phát minh toán học mới vẫn tiếp tục xuất hiện.

Cảm hứng, thuần túy ứng dụng, và vẻ đẹp[sửa | sửa mã nguồn]

Bài chi tiết: Vẻ đẹp của toán học📷Isaac Newton (1643–1727), một trong những người phát minh ra vi tích phân.

Toán học nảy sinh ra từ nhiều kiểu bài toán khác nhau. Trước hết là những bài toán trong thương mại, đo đạc đất đai, kiến trúc, và sau này là thiên văn học; ngày nay, tất cả các ngành khoa học đều gợi ý những bài toán để các nhà toán học nghiên cứu, ngoài ra còn nhiều bài toán nảy sinh từ chính bản thân ngành toán. Chẳng hạn, nhà vật lý Richard Feynman đã phát minh ra tích phân lộ trình (path integral) cho cơ học lượng tử bằng cách kết hợp suy luận toán học với sự hiểu biết sâu sắc về mặt vật lý, và lý thuyết dây - một lý thuyết khoa học vẫn đang trong giai đoạn hình thành với cố gắng thống nhất tất cả các tương tác cơ bản trong tự nhiên - tiếp tục gợi hứng cho những lý thuyết toán học mới.[20] Một số lý thuyết toán học chỉ có ích trong lĩnh vực đã giúp tạo ra chúng, và được áp dụng để giải các bài toán khác trong lĩnh vực đó. Nhưng thường thì toán học sinh ra trong một lĩnh vực có thể hữu ích trong nhiều lĩnh vực, và đóng góp vào kho tàng các khái niệm toán học.

Các nhà toán học phân biệt ra hai ngành toán học thuần túy và toán học ứng dụng. Tuy vậy các chủ đề toán học thuần túy thường tìm thấy một số ứng dụng, chẳng hạn như lý thuyết số trong ngành mật mã học. Việc ngay cả toán học "thuần túy nhất" hóa ra cũng có ứng dụng thực tế chính là điều mà Eugene Wigner gọi là "sự hữu hiệu đến mức khó tin của toán học".[21] Giống như trong hầu hết các ngành học thuật, sự bùng nổ tri thức trong thời đại khoa học đã dẫn đến sự chuyên môn hóa: hiện nay có hàng trăm lĩnh vực toán học chuyên biệt và bảng phân loại các chủ đề toán học đã dài tới 46 trang.[22] Một vài lĩnh vực toán học ứng dụng đã nhập vào những lĩnh vực liên quan nằm ngoài toán học và trở thành những ngành riêng, trong đó có xác suất, vận trù học, và khoa học máy tính.

Những ai yêu thích ngành toán thường thấy toán học có một vẻ đẹp nhất định. Nhiều nhà toán học nói về "sự thanh lịch" của toán học, tính thẩm mỹ nội tại và vẻ đẹp bên trong của nó. Họ coi trọng sự giản đơn và tính tổng quát. Vẻ đẹp ẩn chứa cả bên trong những chứng minh toán học đơn giản và gọn nhẹ, chẳng hạn chứng minh của Euclid cho thấy có vô hạn số nguyên tố, và trong những phương pháp số giúp đẩy nhanh các phép tính toán, như phép biến đổi Fourier nhanh. Trong cuốn sách Lời bào chữa của một nhà toán học (A Mathematician's Apology) của mình, G. H. Hardy tin rằng chính những lý do về mặt thẩm mỹ này đủ để biện minh cho việc nghiên cứu toán học thuần túy. Ông nhận thấy những tiêu chuẩn sau đây đóng góp vào một vẻ đẹp toán học: tầm quan trọng, tính không lường trước được, tính không thể tránh được, và sự ngắn gọn.[23] Sự phổ biến của toán học vì mục đích giải trí là một dấu hiệu khác cho thấy nhiều người tìm thấy sự sảng khoái trong việc giải toán...

Ký hiệu, ngôn ngữ, tính chặt chẽ[sửa | sửa mã nguồn]

Bài chi tiết: Danh sách ký hiệu toán học📷Leonhard Euler, người tạo ra và phổ biến hầu hết các ký hiệu toán học được dùng ngày nay.

Hầu hết các ký hiệu toán học đang dùng ngày nay chỉ mới được phát minh vào thế kỷ 16.[24] Trước đó, toán học được viết ra bằng chữ, quá trình nhọc nhằn này đã cản trở sự phát triển của toán học.[25] Euler (1707–1783) là người tạo ra nhiều trong số những ký hiệu đang được dùng ngày nay. Ký hiệu hiện đại làm cho toán học trở nên dễ hơn đối với chuyên gia toán học, nhưng người mới bắt đầu học toán thường thấy nản lòng. Các ký hiệu cực kỳ ngắn gọn: một vài biểu tượng chứa đựng rất nhiều thông tin. Giống ký hiệu âm nhạc, ký hiệu toán học hiện đại có cú pháp chặt chẽ và chứa đựng thông tin khó có thể viết theo một cách khác đi.

Ngôn ngữ toán học có thể khó hiểu đối với người mới bắt đầu. Những từ như hoặc và chỉ có nghĩa chính xác hơn so với trong lời nói hàng ngày. Ngoài ra, những từ như mở và trường đã được cho những nghĩa riêng trong toán học. Những thuật ngữ mang tính kỹ thuật như phép đồng phôi và khả tích có nghĩa chính xác trong toán học. Thêm vào đó là những cụm từ như nếu và chỉ nếu nằm trong thuật ngữ chuyên ngành toán học. Có lý do tại sao cần có ký hiệu đặc biệt và vốn từ vựng chuyên ngành: toán học cần sự chính xác hơn lời nói thường ngày. Các nhà toán học gọi sự chính xác này của ngôn ngữ và logic là "tính chặt chẽ."

Các lĩnh vực toán học[sửa | sửa mã nguồn]

Bài chi tiết: Các lĩnh vực toán học

Nói chung toán học có thể được chia thành các ngành học về lượng, cấu trúc, không gian, và sự thay đổi (tức là số học, đại số, hình học, và giải tích). Ngoài những mối quan tâm chính này, toán học còn có những lĩnh vực khác khảo sát mối quan hệ giữa toán học và những ngành khác, như với logic và lý thuyết tập hợp, toán học thực nghiệm trong những ngành khoa học khác nhau (toán học ứng dụng), và gần đây hơn là sự nghiên cứu chặt chẽ về tính bất định.

Nền tảng và triết học[sửa | sửa mã nguồn]

📷Kurt Gödel là một trong những nhà logic toán học lớn, với các định lý bất toàn.

Để làm rõ nền tảng toán học, lĩnh vực logic toán học và lý thuyết tập hợp đã được phát triển. Logic toán học bao gồm nghiên cứu toán học về logic và ứng dụng của logic hình thức trong những lĩnh vực toán học khác. Lý thuyết tập hợp là một nhánh toán học nghiên cứu các tập hợp hay tập hợp những đối tượng. Lý thuyết phạm trù, liên quan đến việc xử lý các cấu trúc và mối quan hệ giữa chúng bằng phương pháp trừu tượng, vẫn đang tiếp tục phát triển. Cụm từ "khủng hoảng nền tảng" nói đến công cuộc tìm kiếm một nền tảng toán học chặt chẽ diễn ra từ khoảng năm 1900 đến 1930.[26] Một số bất đồng về nền tảng toán học vẫn còn tồn tại cho đến ngày nay. Cuộc khủng hoảng nền tảng nổi lên từ một số tranh cãi thời đó, trong đó có những tranh cãi liên quan đến lý thuyết tập hợp của Cantor và cuộc tranh cãi giữa Brouwer và Hilbert.

Khoa học máy tính lý thuyết bao gồm lý thuyết khả tính (computability theory), lý thuyết độ phức tạp tính toán, và lý thuyết thông tin. Lý thuyết khả tính khảo sát những giới hạn của những mô hình lý thuyết khác nhau về máy tính, bao gồm mô hình máy Turing nổi tiếng. Lý thuyết độ phức tạp nghiên cứu khả năng có thể giải được bằng máy tính; một số bài toán, mặc dù về lý thuyết có thể giải được bằng máy tính, cần thời gian hay không gian tính toán quá lớn, làm cho việc tìm lời giải trong thực tế gần như không thể, ngay cả với sự tiến bộ nhanh chóng của phần cứng máy tính. Một ví dụ là bài toán nổi tiếng "P = NP?".[27] Cuối cùng, lý thuyết thông tin quan tâm đến khối lượng dữ liệu có thể lưu trữ được trong một môi trường lưu trữ nhất định, và do đó liên quan đến những khái niệm như nén dữ liệu và entropy thông tin.

{\displaystyle p\Rightarrow q\,}📷📷📷📷Logic toán họcLý thuyết tập hợpLý thuyết phạm trùLý thuyết tính toán

Toán học thuần túy[sửa | sửa mã nguồn]

Lượng[sửa | sửa mã nguồn]

Việc nghiên cứu về lượng (quantity) bắt đầu với các con số, trước hết với số tự nhiên và số nguyên và các phép biến đổi số học, nói đến trong lĩnh vực số học. Những tính chất sâu hơn về các số nguyên được nghiên cứu trong lý thuyết số, trong đó có định lý lớn Fermat nổi tiếng. Trong lý thuyết số, giả thiết số nguyên tố sinh đôi và giả thiết Goldbach là hai bài toán chưa giải được.

Khi hệ thống số được phát triển thêm, các số nguyên được xem như là tập con của các số hữu tỉ. Các số này lại được bao gồm trong số thực vốn được dùng để thể hiện những đại lượng liên tục. Số thực được tổng quát hóa thành số phức. Đây là những bước đầu tiên trong phân bố các số, sau đó thì có các quaternion (một sự mở rộng của số phức) và octonion. Việc xem xét các số tự nhiên cũng dẫn đến các số vô hạn (transfinite numbers), từ đó chính thức hóa khái niệm "vô hạn". Một lĩnh vực nghiên cứu khác là kích cỡ (size), từ đó sinh ra số đếm (cardinal numbers) và rồi một khái niệm khác về vô hạn: số aleph, cho phép thực hiện so sánh có ý nghĩa kích cỡ của các tập hợp lớn vô hạn.

{\displaystyle 1,2,3,\ldots \!}📷{\displaystyle \ldots ,-2,-1,0,1,2\,\ldots \!}📷{\displaystyle -2,{\frac {2}{3}},1.21\,\!}📷{\displaystyle -e,{\sqrt {2}},3,\pi \,\!}📷{\displaystyle 2,i,-2+3i,2e^{i{\frac {4\pi }{3}}}\,\!}📷Số tự nhiênSố nguyênSố hữu tỉSố thựcSố phức

Cấu trúc[sửa | sửa mã nguồn]

Nhiều đối tượng toán học, chẳng hạn tập hợp những con số và những hàm số, thể hiện cấu trúc nội tại toát ra từ những phép biến đổi toán học hay những mối quan hệ được xác định trên tập hợp. Toán học từ đó nghiên cứu tính chất của những tập hợp có thể được diễn tả dưới dạng cấu trúc đó; chẳng hạn lý thuyết số nghiên cứu tính chất của tập hợp những số nguyên có thể được diễn tả dưới dạng những phép biến đổi số học. Ngoài ra, thường thì những tập hợp có cấu trúc (hay những cấu trúc) khác nhau đó thể hiện những tính chất giống nhau, khiến người ta có thể xây dựng nên những tiên đề cho một lớp cấu trúc, rồi sau đó nghiên cứu đồng loạt toàn bộ lớp cấu trúc thỏa mãn những tiên đề này. Do đó người ta có thể nghiên cứu các nhóm, vành, trường, và những hệ phức tạp khác; những nghiên cứu như vậy (về những cấu trúc được xác định bởi những phép biến đổi đại số) tạo thành lĩnh vực đại số trừu tượng. Với mức độ tổng quát cao của mình, đại số trừu tượng thường có thể được áp dụng vào những bài toán dường như không liên quan gì đến nhau. Một ví dụ về lý thuyết đại số là đại số tuyến tính, lĩnh vực nghiên cứu về các không gian vectơ, ở đó những yếu tố cấu thành nó gọi là vectơ có cả lượng và hướng và chúng có thể được dùng để mô phỏng các điểm (hay mối quan hệ giữa các điểm) trong không gian. Đây là một ví dụ về những hiện tượng bắt nguồn từ những lĩnh vực hình học và đại sốban đầu không liên quan gì với nhau nhưng lại tương tác rất mạnh với nhau trong toán học hiện đại. Toán học tổ hợp nghiên cứu những cách tính số lượng những đối tượng có thể xếp được vào trong một cấu trúc nhất định.

{\displaystyle {\begin{matrix}(1,2,3)&(1,3,2)\\(2,1,3)&(2,3,1)\\(3,1,2)&(3,2,1)\end{matrix}}}📷📷📷📷📷📷Toán học tổ hợpLý thuyết sốLý thuyết nhómLý thuyết đồ thịLý thuyết trật tựĐại số

Không gian[sửa | sửa mã nguồn]

Việc nghiên cứu không gian bắt đầu với hình học - cụ thể là hình học Euclid. Lượng giác là một lĩnh vực toán học nghiên cứu về mối quan hệ giữa các cạnh và góc của tam giác và với các hàm lượng giác; nó kết hợp không gian và các con số, và bao gồm định lý Pythagore nổi tiếng. Ngành học hiện đại về không gian tổng quát hóa những ý tưởng này để bao gồm hình học nhiều chiều hơn, hình học phi Euclide (đóng vai trò quan trọng trong lý thuyết tương đối tổng quát), và tô pô. Cả lượng và không gian đều đóng vai trò trong hình học giải tích, hình học vi phân, và hình học đại số. Hình học lồi và hình học rời rạc trước đây được phát triển để giải các bài toán trong lý thuyết số và giải tích phiếm hàm thì nay đang được nghiên cứu cho các ứng dụng trong tối ưu hóa (tối ưu lồi) và khoa học máy tính (hình học tính toán). Trong hình học vi phân có các khái niệm bó sợi (fiber bundles) và vi tích phân trên các đa tạp, đặc biệt là vi tích phân vectơ và vi tích phân tensor. Hình học đại số thì mô tả các đối tượng hình học dưới dạng lời giải là những tập hợp phương trình đa thức, cùng với những khái niệm về lượng và không gian, cũng như nghiên cứu về các nhóm tô-pô kết hợp cấu trúc và không gian. Các nhóm Lie được dùng để nghiên cứu không gian, cấu trúc, và sự thay đổi. Tô pô trong tất cả những khía cạnh của nó có thể là một lĩnh vực phát triển vĩ đại nhất của toán học thế kỷ 20; nó bao gồm tô-pô tập hợp điểm (point-set topology), tô-pô lý thuyết tập hợp (set-theoretic topology), tô-pô đại số và tô-pô vi phân (differential topology). Trong đó, những chủ đề của tô-pô hiện đại là lý thuyết không gian mêtric hóa được (metrizability theory), lý thuyết tập hợp tiên đề (axiomatic set theory), lý thuyết đồng luân (homotopy theory), và lý thuyết Morse. Tô-pô cũng bao gồm giả thuyết Poincaré nay đã giải được, và giả thuyết Hodge vẫn chưa giải được. Những bài toán khác trong hình học và tô-pô, bao gồm định lý bốn màu và giả thiết Kepler, chỉ giải được với sự trợ giúp của máy tính.

📷📷📷📷📷📷Hình họcLượng giácHình học vi phânTô pôHình học fractalLý thuyết về độ đo

Sự thay đổi[sửa | sửa mã nguồn]

Hiểu và mô tả sự thay đổi là chủ đề thường gặp trong các ngành khoa học tự nhiên. Vi tích phân là một công cụ hiệu quả đã được phát triển để nghiên cứu sự thay đổi đó. Hàm sốtừ đây ra đời, như một khái niệm trung tâm mô tả một đại lượng đang thay đổi. Việc nghiên cứu chặt chẽ các số thực và hàm số của một biến thực được gọi là giải tích thực, với số phức thì có lĩnh vực tương tự gọi là giải tích phức. Giải tích phiếm hàm (functional analysis) tập trung chú ý vào những không gian thường là vô hạn chiều của hàm số. Một trong nhiều ứng dụng của giải tích phiếm hàm là trong cơ học lượng tử (ví dụ: lý thuyết phiếm hàm mật độ). Nhiều bài toán một cách tự nhiên dẫn đến những mối quan hệ giữa lượng và tốc độ thay đổi của nó, rồi được nghiên cứu dưới dạng các phương trình vi phân. Nhiều hiện tượng trong tự nhiên có thể được mô tả bằng những hệ thống động lực; lý thuyết hỗn độn nghiên cứu cách thức theo đó nhiều trong số những hệ thống động lực này thể hiện những hành vi không tiên đoán được nhưng vẫn có tính tất định.

📷📷📷📷📷📷Vi tích phânVi tích phân vec-tơPhương trình vi phânHệ thống động lựcLý thuyết hỗn độnGiải tích phức

Toán học ứng dụng[sửa | sửa mã nguồn]

Toán học ứng dụng quan tâm đến những phương pháp toán học thường được sử dụng trong khoa học, kỹ thuật, kinh doanh, và công nghiệp. Như vậy, "toán học ứng dụng" là một ngành khoa học toán học với kiến thức đặc thù. Thuật ngữ toán học ứng dụng cũng được dùng để chỉ lĩnh vực chuyên nghiệp, ở đó các nhà toán học giải quyết các bài toán thực tế. Với tư cách là một ngành nghề chú trọng vào các bài toán thực tế, toán học ứng dụng tập trung vào "việc thiết lập, nghiên cứu, và sử dụng những mô hình toán học" trong khoa học, kỹ thuật, và những lĩnh vực thực hành toán học khác. Trước đây, những ứng dụng thực tế đã thúc đẩy sự phát triển các lý thuyết toán học, để rồi sau đó trở thành chủ đề nghiên cứu trong toán học thuần túy, nơi toán học được phát triển chủ yếu cho chính nó. Như vậy, hoạt động của toán học ứng dụng nhất thiết có liên hệ đến nghiên cứu trong lĩnh vực toán học thuần túy.

Thống kê và những lĩnh vực liên quan[sửa | sửa mã nguồn]

Toán học ứng dụng có nhiều phần chung với thống kê, đặc biệt với lý thuyết xác suất. Các nhà thống kê, khi làm việc trong một công trình nghiên cứu, "tạo ra số liệu có ý nghĩa" sử dụng phương pháp tạo mẫu ngẫu nhiên (random sampling) và những thí nghiệm được ngẫu nhiên hóa (randomized experiments);[28] việc thiết kế thí nghiệm hay mẫu thống kê xác định phương pháp phân tích số liệu (trước khi số liệu được tạo ra). Khi xem xét lại số liệu từ các thí nghiệm và các mẫu hay khi phân tích số liệu từ những nghiên cứu bằng cách quan sát, các nhà thống kê "làm bật ra ý nghĩa của số liệu" sử dụng phương pháp mô phỏng và suy luận – qua việc chọn mẫu và qua ước tính; những mẫu ước tính và những tiên đoán có được từ đó cần được thử nghiệm với những số liệu mới.[29]

Lý thuyết thống kê nghiên cứu những bài toán liên quan đến việc quyết định, ví dụ giảm thiểu nguy cơ (sự tổn thất được mong đợi) của một hành động mang tính thống kê, chẳng hạn sử dụng phương pháp thống kê trong ước tính tham số, kiểm nghiệm giả thuyết, và chọn ra tham số cho kết quả tốt nhất. Trong những lĩnh vực truyền thống này của thống kê toán học, bài toán quyết định-thống kê được tạo ra bằng cách cực tiểu hóa một hàm mục tiêu (objective function), chẳng hạn giá thành hay sự mất mát được mong đợi, dưới những điều kiện nhất định.[30] Vì có sử dụng lý thuyết tối ưu hóa, lý thuyết toán học về thống kê có chung mối quan tâm với những ngành khoa học khác nghiên cứu việc quyết định, như vận trù học, lý thuyết điều khiển, và kinh tế học toán.[31]

Toán học tính toán[sửa | sửa mã nguồn]

Toán học tính toán đưa ra và nghiên cứu những phương pháp giải các bài toán toán học mà con người thường không có khả năng giải số được. Giải tích số nghiên cứu những phương pháp giải các bài toán trong giải tích sử dụng giải tích phiếm hàm và lý thuyết xấp xỉ; giải tích số bao gồm việc nghiên cứu xấp xỉ và rời rạc hóa theo nghĩa rộng, với sự quan tâm đặc biệt đến sai số làm tròn (rounding errors). Giải tích số và nói rộng hơn tính toán khoa học (scientific computing) cũng nghiên cứu những chủ đề phi giải tích như khoa học toán học, đặc biệt là ma trận thuật toán và lý thuyết đồ thị. Những lĩnh vực khác của toán học tính toán bao gồm đại số máy tính (computer algebra) và tính toán biểu tượng(symbolic computation).

📷📷📷📷📷📷📷Vật lý toán họcThủy động lực họcGiải tích sốTối ưu hóaLý thuyết xác suấtThống kêMật mã học📷📷📷📷📷 📷📷Tài chính toánLý thuyết trò chơiSinh học toánHóa học toánToán sinh họcKinh tế toánLý thuyết điều khiển

Giải thưởng toán học và những bài toán chưa giải được[sửa | sửa mã nguồn]

Có thể nói giải thưởng toán học danh giá nhất là Huy chương Fields,[32][33] thiết lập vào năm 1936 và nay được trao bốn năm một lần cho 2 đến 4 nhà toán học có độ tuổi dưới 40. Huy chương Fields thường được xem là tương đương với Giải Nobel trong những lĩnh vực khác. (Giải Nobel không xét trao thưởng trong lĩnh vực toán học) Một số giải thưởng quốc tế quan trọng khác gồm có: Giải Wolf về Toán học (thiết lập vào năm 1978) để ghi nhận thành tựu trọn đời; Giải Abel (thiết lập vào năm 2003) dành cho những nhà toán học xuất chúng; Huy chương Chern (thiết lập vào năm 2010) để ghi nhận thành tựu trọn đời.

Năm 1900, nhà toán học người Đức David Hilbert biên soạn một danh sách gồm 23 bài toán chưa có lời giải (còn được gọi là Các bài toán của Hilbert). Danh sách này rất nổi tiếng trong cộng đồng các nhà toán học, và ngày nay có ít nhất chín bài đã được giải. Một danh sách mới bao gồm bảy bài toán quan trọng, gọi là "Các bài toán của giải thiên niên kỷ" (Millennium Prize Problems), đã được công bố vào năm 2000, ai giải được một trong số các bài toán này sẽ được trao giải một triệu đô-la. Chỉ có một bài toán từ danh sách của Hilbert (cụ thể là giả thuyết Riemann) trong danh sách mới này. Tới nay, một trong số bảy bài toán đó (giả thuyết Poincaré) đã có lời giải.

Mối quan hệ giữa toán học và khoa học[sửa | sửa mã nguồn]

Carl Friedrich Gauss, người được xem là "hoàng tử của toán học."[34]

Gauss xem toán học là "nữ hoàng của các ngành khoa học".[35] Trong cụm từ La-tinh Regina Scientiarum và cụm từ tiếng Đức Königin der Wissenschaften (cả hai đều có nghĩa là "nữ hoàng của các ngành khoa học"), từ chỉ "khoa học" có nghĩa là "lĩnh vực tri thức," và đây cũng chính là nghĩa gốc của từ science (khoa học) trong tiếng Anh; như vậy toán học là một lĩnh vực tri thức. Sự chuyên biệt hóa giới hạn nghĩa của "khoa học" vào "khoa học tự nhiên" theo sau sự phát triển của phương pháp luận Bacon, từ đó đối lập "khoa học tự nhiên" với phương pháp kinh viện, phương pháp luận Aristotle nghiên cứu từ những nguyên lý cơ sở. So với các ngành khoa học tự nhiên như sinh học hay vật lý học thì thực nghiệm và quan sát thực tế có vai trò không đáng kể trong toán học. Albert Einstein nói rằng "khi các định luật toán học còn phù hợp với thực tại thì chúng không chắc chắn; và khi mà chúng chắc chắn thì chúng không còn phù hợp với thực tại."[36] Mới đây hơn, Marcus du Sautoy đã gọi toán học là "nữ hoàng của các ngành khoa học;... động lực thúc đẩy chính đằng sau những phát kiến khoa học."[37]

Nhiều triết gia tin rằng, trong toán học, tính có thể chứng minh được là sai (falsifiability) không thể thực hiện được bằng thực nghiệm, và do đó toán học không phải là một ngành khoa học theo như định nghĩa của Karl Popper.[38] Tuy nhiên, trong thập niên 1930, các định lý về tính không đầy đủ (incompleteness theorems) của Gödel đưa ra gợi ý rằng toán học không thể bị quy giảm về logic mà thôi, và Karl Popper kết luận rằng "hầu hết các lý thuyết toán học, giống như các lý thuyết vật lý và sinh học, mang tính giả định-suy diễn: toán học thuần túy do đó trở nên gần gũi hơn với các ngành khoa học tự nhiên nơi giả định mang tính chất suy đoán hơn hơn mức mà người ta nghĩ."[39]

Một quan điểm khác thì cho rằng một số lĩnh vực khoa học nhất định (như vật lý lý thuyết) là toán học với những tiên đề được tạo ra để kết nối với thực tại. Thực sự, nhà vật lý lý thuyết J. M. Ziman đã cho rằng khoa học là "tri thức chung" và như thế bao gồm cả toán học.[40] Dù sao đi nữa, toán học có nhiều điểm chung với nhiều lĩnh vực trong các ngành khoa học vật lý, đáng chú ý là việc khảo sát những hệ quả logic của các giả định. Trực giác và hoạt động thực nghiệm cũng đóng một vai trò trong việc xây dựng nên các giả thuyết trong toán học lẫn trong những ngành khoa học (khác). Toán học thực nghiệm ngày càng được chú ý trong bản thân ngành toán học, và việc tính toán và mô phỏng đang đóng vai trò ngày càng lớn trong cả khoa học lẫn toán học.

Ý kiến của các nhà toán học về vấn đề này không thống nhất. Một số cảm thấy việc gọi toán học là khoa học làm giảm tầm quan trọng của khía cạnh thẩm mỹ của nó, và lịch sử của nó trong bảy môn khai phóng truyền thống; một số người khác cảm thấy rằng bỏ qua mối quan hệ giữa toán học và các ngành khoa học là cố tình làm ngơ trước thực tế là sự tương tác giữa toán học và những ứng dụng của nó trong khoa học và kỹ thuật đã là động lực chính của những phát triển trong toán học. Sự khác biệt quan điểm này bộc lộ trong cuộc tranh luận triết học về chuyện toán học "được tạo ra" (như nghệ thuật) hay "được khám phá ra" (như khoa học). Các viện đại học thường có một trường hay phân khoa "khoa học và toán học".[41] Cách gọi tên này ngầm ý rằng khoa học và toán học gần gũi với nhau nhưng không phải là một.

0
Em là mối tình đầu của tôi và cũng là sự day dứt mãnh liệt trong tôi. 9 năm chờ đợi, khi ngày cưới chỉ còn 45 ngày thì em ra đi. Tiếng chuông điện thoại oan nhiệt reo lên lúc 3 giờ chiều, nhưng đến mãi những ngày sau vẫn là nỗi ám ảnh của tôi trong những đêm trắng. Tôi đã cầu mong đó chỉ là sự nhầm lẫn, chỉ đến khi nhìn em nắm trên băng ca trắng toát, đầu quấn chặt những vòng...
Đọc tiếp

Em là mối tình đầu của tôi và cũng là sự day dứt mãnh liệt trong tôi. 9 năm chờ đợi, khi ngày cưới chỉ còn 45 ngày thì em ra đi. Tiếng chuông điện thoại oan nhiệt reo lên lúc 3 giờ chiều, nhưng đến mãi những ngày sau vẫn là nỗi ám ảnh của tôi trong những đêm trắng. Tôi đã cầu mong đó chỉ là sự nhầm lẫn, chỉ đến khi nhìn em nắm trên băng ca trắng toát, đầu quấn chặt những vòng băng trắng thấm đẫm máu, tôi mới chịu tin đó là sự thật!

Và chỉ đến khi em ra đi, tôi cũng mới chịu tin là mình đã mất em mãi mãi.

Em nằm đó. Bất động với một vòng khăn trắng quấn quanh đầu. Tôi bắt đầu hoảng hốt, tôi có cảm giác rằng em sẽ không bao giờ tỉnh dậy nữa. Nước mắt tôi bắt đầu rơi... Tôi lo lắng ngồi ở băng ghế hành lang và cầu nguyện. Cầu nguyện một phép mầu nào đó sẽ đến với em...

Côi gái sắp là cô dâu của tôi!

Em đẹp, vẻ đẹp mỏng manh như những nhành hoa Huệ màu trắng, tinh khôi và trong sáng. Tôi quen em từ những ngày còn nhỏ. Nhà em ở cách nhà tôi chỉ một đoạn đường làng. Thuở đó, em vẫn hay hỏi bài tôi, thỉnh thoảng vẫn bị tôi cốc đầu vì nói hoài mà không hiểu. Chúng tôi không quá thân nhau, tôi cũng chỉ coi em là người hàng xóm bình thường như những người khác. Tuổi thơ vất vả, thiếu thốn không đủ sức cho tôi nhen nhóm một chút cảm xúc nào với những người bạn khác giới.Rồi tôi vào đại học. Em vẫn ở quê. Mấy năm liền biệt tin nhau. Đến một ngày bất ngờ gặp em ở Sài Gòn. Em đến nhờ tôi tìm chỗ trọ vì mới đậu đại học. Tôi nhiệt tình làm tài xế của em những ngày ấy. Rồi thân. Rồi yêu...

Chúng tôi yêu nhau tha thiết, mãnh liệt.Lần đầu tiên, tôi thấy mình thực sự quan trọng và có ý nghĩa với ai đó. Lần đầu tiên, tôi có cảm giác được sở hữu một ai đó cho riêng mình. Là của riêng tôi, buồn, vui sẻ chia. Lần đầu tiên, thấy mình không cô độc, không lạc lõng giữa một Sài Gòn phồn hoa và xa lạ nữa...

Tôi thấy mình may mắn khi có em. Em khiến những chuỗi ngày sinh viên của tôi trở nên ý nghĩa. Hồi đó tôi nghèo quá, đến tiền học phí còn không có mà nộp thì nào có cái gì dành cho em. Những buổi dẫn em đi chơi, cũng chỉ dám thơ thẩn cùng nhau qua vài con đường, nắm vội bàn tay rồi lại bước về nhà, vùi đầu vào bài học, hay những mớ công việc làm thêm.

Nhưng em là một cô gái với đầy sự bao dung.Em không đòi hỏi ở tôi bất kì điều gì.

Em thấu hiểu cho nỗi cực khổ của tôi từ những ngày thơ bé, gánh nặng cơm áo gạo tiền của tôi thời sinh viên và sẻ chia với tôi những khó khăn trong cuộc sống.....

1
16 tháng 11 2018

... Em cũng nghèo nhưng thi thoảng vẫn dúi vào tay tôi một ổ bánh mì hay một chai nước ngọt. Sự chân thành của em làm tôi thấy mình rung động.

Ngày thứ hai trôi qua!

Em vẫn mê man nhưng bác sĩ nói cứ nuôi hy vọng.

Tôi vẫn tiếp tục ngồi ở hành lang. Kiên quyết không rời đi. Đôi mắt tôi mờ dại vì mệt và lo lắng...

Tôi và em hẹn nhau ngày ra trường sẽ cưới!

Tôi ra trường trước em. Rồi chìm đắm trong công việc, mải mê tìm sự nghiệp cho riêng mình. Có những ngày vùi đầu vào công việc, tôi quên bẵng em. Thi thoảng, em quay đi và khóc. Em giấu những giọt nước mắt vào trong, nhường cho tôi với sự nghiệp của mình...

Tôi mải mê, mải mê đến mức khi em đã ra trường rồi, mà lời hẹn năm nào vẫn còn để ngỏ.

Rồi tôi có công việc ở công ty nước ngoài, em mừng ra mặt. Tôi nghỉ việc để tự kinh doanh, em lo lắng, đôi mắt dõi theo chờ đợi.

Ngày thứ ba trôi qua! bác sĩ nói cứ nuôi hy vọng.

Ngày tôi sạt nghiệp. Em một mình đi xe trong đêm hơn hai mươi cây số từ Sài Gòn về Bình Dương để chỉ gục đầu vào ngực tôi mà khóc. Em hôn lên khuôn mặt lạnh băng của tôi, em tìm cách vuột ve vỗ về tôi. Em biết tôi đau, nhưng nỗi đau đạng bị nén chặt.

Tôi đã phớt lờ em... tôi không muốn em thương hại chính mình. Tôi gạt em ra và bước lên, một mình giải quyết khủng hoảng. Em nhìn tôi... hoảng hoải.

Ngày thứ tư

" Hãy chuẩn bị, bệnh nhân có thể đi bất cứ lúc nào."

Tôi không tin vào điều đó... Tôi lững thững bước đi trong đêm. Tưởng chừng như mình bị nghẹn thở... nước mắt rơi xối xả. Tôi ước tất cả chỉ là một giấc mơ. Em đừng đó nhìn tôi. Bông huệ trắng mong manh sẽ mãi ở trong vòng tay tôi. Mãi mãi...

Cuối cùng thì chúng tôi quyết định sẽ đến với nhau. Em đã đợi tôi chín năm và không muốn đợi lâu thêm nữa... Tôi cũng biết dẫu chưa có một sự nghiệp thực sự vẻ vang nhưng cũng đến lúc bắt đầu những trang mới bên em.

Chúng tôi lên kế hoạch cho đám cưới. Họ hàng hai bên đã gặp nhau... Tất cả mọi cái đều đã được sắp đặt trước, chỉ trừ cái chết của em.

Ngày thứ 5

Em đi! tôi không sẵn sàng cho tình huống này...

*Isaac Newton Jr.Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.Luận...
Đọc tiếp

*Isaac Newton Jr.

Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.

Luận thuyết của ông về Philosophiae Naturalis Principia Mathematica (Các Nguyên lý Toán học của Triết học Tự nhiên) xuất bản năm 1687, đã mô tả về vạn vật hấp dẫn và 3 định luật Newton, được coi là nền tảng của cơ học cổ điển, đã thống trị các quan niệm về vật lý, khoa học trong suốt 3 thế kỷ tiếp theo. ông cho rằng sự chuyển động của các vật thể trên mặt đất và các vật thể trong bầu trời bị chi phối bởi các định luật tự nhiên giống nhau; bằng cách chỉ ra sự thống nhất giữa Định luật Kepler về sự chuyển động của hành tinh và lý thuyết của ông về trọng lực, ông đã loại bỏ hoàn toàn Thuyết nhật tâm và theo đuổi cách mạng khoa học.

Trong cơ học, Newton đưa ra nguyên lý bảo toàn động lượng (bảo toàn quán tính). Trong quang học, ông khám phá ra sự tán sắcánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu.

Trong toán học, Newton cùng với Gottfried Leibniz phát triển phép tính vi phân và tích phân. Ông cũng đưa ra nhị thức Newton tổng quát.

Năm 2005, trong một cuộc thăm dò ý kiến của Hội Hoàng gia về nhân vật có ảnh hưởng lớn nhất trong lịch sử khoa học, Newton vẫn là người được cho rằng có nhiều ảnh hưởng hơn Albert Einstein.[3]

Sự nghiệp

📷Newton năm 1702, vẽ bởi Godfrey Kneller

Isaac Newton sinh ra trong một gia đình nông dân. Khi ông ở quãng tuổi từ khoảng 12 đến 17, ông học tại King's School, Grantham, nơi mà ông chỉ học tiếng Latinh và không có Toán. Sau đó, ông rời khỏi trường và đến tháng 10 năm 1659, ông có mặt tại Woolsthorpe-by-Colsterworth, nơi mà mẹ ông, lần thứ hai góa bụa, đang cố gắng khiến ông trở thành một nông dân. Nhưng Newton lại ghét việc đồng áng. Henry Stocks, thầy của ông tại King's School, đã thuyết phục mẹ ông cho ông quay trở lại trường học để ông có thể tiếp tục việc học của mình.

Vào tháng 6 năm 1661, Newton được gửi tới Đại học Cambridge để trở thành luật sư. Tại Cambridge, Newton bị ấn tượng mạnh từ trường phái Euclid, tuy rằng tư duy của ông cũng bị ảnh hưởng bởi trường phái của Roger Bacon và René Descartes. Một đợt dịch bệnh đã khiến trường Cambridge đóng cửa và trong thời gian ở nhà, Newton đã có những phát kiến khoa học quan trọng, dù chúng không được công bố ngay.

Những người có ảnh hưởng đến việc công bố các công trình của Newton là Robert Hooke và Edmond Halley. Sau một cuộc tranh luận về chủ đề quỹ đạo của một hạt khi bay từ vũ trụ vào Trái Đất với Hooke, Newton đã bị cuốn hút vào việc sử dụng định luật vạn vật hấp dẫn và cơ học của ông trong tính toán quỹ đạo Johannes Kepler. Những kết quả này hấp dẫn Halley và ông đã thuyết phục được Newton xuất bản chúng. Từ tháng 8 năm 1684 đến mùa xuân năm 1688, Newton hoàn thành tác phẩm, mà sau này trở thành một trong những công trình nền tảng quan trọng nhất cho vật lý của mọi thời đại, cuốn Philosophiae Naturalis Principia Mathematica.

Trong quyển I của tác phẩm này, Newton giới thiệu các định nghĩa và ba định luật của chuyển động thường được biết với tên gọi sau này là Định luật Newton. Quyển II trình bày các phương pháp luận khoa học mới của Newton thay thế cho triết lý Descartes. Quyển cuối cùng là các ứng dụng của lý thuyết động lực học của ông, trong đó có sự giải thích về thủy triều và lý thuyết về sự chuyển động của Mặt Trăng. Để kiểm chứng lý thuyết về vạn vật hấp dẫn của ông, Newton đã hỏi nhà thiên văn John Flamsteedkiểm tra xem Sao Thổ có chuyển động chậm lại mỗi lần đi gần Sao Mộc không. Flamsteed đã rất sửng sốt nhận ra hiệu ứng này có thật và đo đạc phù hợp với các tính toán của Newton. Các phương trình của Newton được củng cố thêm bằng kết quả quan sát về hình dạng bẹt của Trái Đất tại hai cực, thay vì lồi ra tại hai cực như đã tiên đoán bởi trường phái Descartes. Phương trình của Newton cũng miêu tả được gần đúng chuyển động Mặt Trăng, và tiên đoán chính xác thời điểm quay lại của sao chổi Halley. Trong các tính toán về hình dạng của một vật ít gây lực cản nhất khi nằm trong dòng chảy của chất lỏng hay chất khí, Newton cũng đã viết ra và giải được bài toán giải tích biến phân đầu tiên của thế giới.

Newton sáng tạo ra một phương pháp khoa học rất tổng quát. Ông trình bày phương pháp luận của ông thành bốn quy tắc của lý luận khoa học. Các quy tắc này được phát biểu trong quyển Philosophiae Naturalis Principia Mathematica như sau:

Các hiện tượng tự nhiên phải được giải thích bằng một hệ tối giản các quy luật đúng, vừa đủ và chặt chẽ.

Các hiện tượng tự nhiên giống nhau phải có cùng nguyên nhân như nhau.

Các tính chất của vật chất là như nhau trong toàn vũ trụ.

Một nhận định rút ra từ quan sát tự nhiên chỉ được coi là đúng cho đến khi có một thực nghiệm khác mâu thuẫn với nó.

Bốn quy tắc súc tích và tổng quát cho nghiên cứu khoa học này đã là một cuộc cách mạng về tư duy thực sự vào thời điểm bấy giờ. Thực hiện các quy tắc này, Newton đã hình thành được các định luật tổng quát của tự nhiên và giải thích được gần như tất cả các bài toán khoa học vào thời của ông. Newton còn đi xa hơn việc chỉ đưa ra các quy tắc cho lý luận, ông đã miêu tả cách áp dụng chúng trong việc giải quyết một bài toán cụ thể. Phương pháp giải tích mà ông sáng tạo vượt trội các phương pháp mang tính triết lý hơn là tính chính xác khoa học của Aristoteles và Thomas Aquinas. Newton đã hoàn thiện phương pháp thực nghiệm của Galileo Galilei, tạo ra phương pháp tổng hợp vẫn còn được sử dụng cho đến ngày nay trong khoa học. Những câu chữ sau đây trong quyển Opticks(Quang học) của ông có thể dễ dàng bị nhầm lẫn với trình bày hiện đại của phương pháp nghiên cứu thời nay, nếu Newton dùng từ "khoa học" thay cho "triết lý về tự nhiên":

Cũng như trong toán học, trong triết lý về tự nhiên, việc nghiên cứu các vấn đề hóc búa cần thực hiện bằng phương pháp phân tích và tổng hợp. Nó bao gồm làm thí nghiệm, quan sát, đưa ra những kết luận tổng quát, từ đó suy diễn. Phương pháp này sẽ giúp ta đi từ các hợp chất phức tạp đến nguyên tố, đi từ chuyển động đến các lực tạo ra nó; và tổng quát là từ các hiện tượng đến nguyên nhân, từ nguyên nhân riêng lẻ đến nguyên nhân tổng quát, cho đến khi lý luận dừng lại ở mức tổng quát nhất. Tổng hợp lại các nguyên nhân chúng ta đã khám phá ra thành các nguyên lý, chúng ta có thể sử dụng chúng để giải thích các hiện tượng hệ quả.

Newton đã xây dựng lý thuyết cơ học và quang học cổ điển và sáng tạo ra giải tích nhiều năm trước Gottfried Leibniz. Tuy nhiên ông đã không công bố công trình về giải tích trước Leibniz. Điều này đã gây nên một cuộc tranh cãi giữa Anh và lục địa châu Âu suốt nhiều thập kỷ về việc ai đã sáng tạo ra giải tích trước. Newton đã phát hiện ra định lý nhị thức đúng cho các tích của phân số, nhưng ông đã để cho John Wallis công bố. Newton đã tìm ra một công thức cho vận tốc âm thanh, nhưng không phù hợp với kết quả thí nghiệm của ông. Lý do cho sự sai lệch này nằm ở sự giãn nở đoạn nhiệt, một khái niệm chưa được biết đến thời bấy giờ. Kết quả của Newton thấp hơn γ½ lần thực tế, với γ là tỷ lệ các nhiệt dung của không khí.

Theo quyển Opticks, mà Newton đã chần chừ trong việc xuất bản mãi cho đến khi Hooke mất, Newton đã quan sát thấy ánh sáng trắng bị chia thành phổ nhiều màu sắc, khi đi qua lăng kính (thuỷ tinh của lăng kính có chiết suất thay đổi tùy màu). Quan điểm hạt về ánh sáng của Newton đã xuất phát từ các thí nghiệm mà ông đã làm với lăng kính ở Cambridge. Ông thấy các ảnh sau lăng kính có hình bầu dục chứ không tròn như lý thuyết ánh sáng thời bấy giờ tiên đoán. Ông cũng đã lần đầu tiên quan sát thấy các vòng giao thoa mà ngày nay gọi là vòng Newton, một bằng chứng của tính chất sóng của ánh sáng mà Newton đã không công nhận. Newton đã cho rằng ánh sáng đi nhanh hơn trong thuỷ tinh, một kết luận trái với lý thuyết sóng ánh sáng của Christiaan Huygens.

Newton cũng xây dựng một hệ thống hoá học trong mục 31 cuối quyển Opticks. Đây cũng là lý thuyết hạt, các "nguyên tố" được coi như các sự sắp xếp khác nhau của những nguyên tử nhỏ và cứng như các quả bi-a. Ông giải thích phản ứng hoá học dựa vào ái lực giữa các thành phần tham gia phản ứng. Cuối đời (sau 1678) ông thực hiện rất nhiều các thí nghiệm hoá học vô cơ mà không ra kết quả gì.

Newton rất nhạy cảm với các phản bác đối với các lý thuyết của ông, thậm chí đến mức không xuất bản các công trình cho đến tận sau khi người hay phản bác ông nhất là Hooke mất. Quyển Philosophiae Naturalis Principia Mathematica phải chờ sự thuyết phục của Halley mới ra đời. Ông tỏ ra ngày càng lập dị vào cuối đời khi thực hiện các phản ứng hoá học và cùng lúc xác định ngày tháng cho các sự kiện trong Kinh Thánh. Sau khi Newton qua đời, người ta tìm thấy một lượng lớn thuỷ ngân trong cơ thể của ông, có thể bị nhiễm trong lúc làm thí nghiệm. Điều này hoàn toàn có thể giải thích sự lập dị của Newton.

Newton đã một mình đóng góp cho khoa học nhiều hơn bất cứ một nhân vật nào trong lịch sử của loài người. Ông đã vượt trên tất cả những bộ óc khoa học lớn của thế giới cổ đại, tạo nên một miêu tả cho vũ trụ không tự mâu thuẫn, đẹp và phù hợp với trực giác hơn mọi lý thuyết có trước. Newton đưa ra cụ thể các nguyên lý của phương pháp khoa học có thể ứng dụng tổng quát vào mọi lĩnh vực của khoa học. Đây là điều tương phản lớn so với các phương pháp riêng biệt cho mỗi lĩnh vực của Aristoteles và Aquinas trước đó.

Ngoài việc nghiên cứu khoa học, Newton dùng phần lớn thời gian để nghiên cứu Kinh Thánh, ông tin nhận một Chúa Trời duy nhất là Đấng tạo hóa siêu việt mà người ta không thể phủ nhận sự hiện hữu của ngài khi nhìn ngắm vẻ hùng vĩ của mọi tạo vật.[4][5] Mặc dù được trưởng dưỡng trong một gia đình Anh giáo nhưng vào độ tuổi ba mươi của mình, niềm tin Kitô giáo của Newton nếu công khai ra sẽ không được coi là chính thống.[6]

Cũng có các nhà triết học trước như Galileo và John Philoponus sử dụng phương pháp thực nghiệm, nhưng Newton là người đầu tiên định nghĩa cụ thể và hệ thống cách sử dụng phương pháp này. Phương pháp của ông cân bằng giữa lý thuyết và thực nghiệm, giữa toán học và cơ học. Ông toán học hoá mọi khoa học về tự nhiên, đơn giản hoá chúng thành các bước chặt chẽ, tổng quát và hợp lý, tạo nên sự bắt đầu của Kỷ nguyên Suy luận. Những nguyên lý mà Newton đưa ra do đó vẫn giữ nguyên giá trị cho đến thời đại ngày nay. Sau khi ông ra đi, những phương pháp của ông đã mang lại những thành tựu khoa học lớn gấp bội những gì mà ông có thể tưởng tượng lúc sinh thời. Các thành quả này là nền tảng cho nền công nghệ mà chúng ta được hưởng ngày nay.

Không ngoa dụ chút nào khi nói rằng Newton là danh nhân quan trọng nhất đóng góp cho sự phát triển của khoa học hiện đại. Như nhà thơ Alexander Pope đã viết:

Nature and nature's laws lay hid in night;God said "Let Newton be" and all was light.Tự nhiên và luật tự nhiên lẩn khuất trong màn đêm phủ;Chúa phán: Newton hãy xuất hiện! Và mọi thứ chói lòa.

Tiểu sử

📷Quyển Philosophiae Naturalis Principia Mathematica của Newton📷Isaac Newton (Bolton, Sarah K. Famous Men of Science NY: Thomas Y. Crowell & Co., 1889)

Isaac Newton sinh ra tại một ngôi nhà ở Woolsthorpe, gần Grantham ở Lincolnshire, Anh, vào ngày 25 tháng 12 năm 1642 (4 tháng 1 năm 1643 theo lịch mới). Ông chưa một lần nhìn thấy mặt cha, do cha ông, một nông dân cũng tên là Isaac Newton Sr., mất trước khi ông sinh ra không lâu. Sống không hạnh phúc với cha dượng từ nhỏ, Newton bắt đầu những năm học phổ thông trầm uất, xa nhà và bị gián đoạn bởi các biến cố gia đình. May mắn là do không có khả năng điều hành tài chính trong vai anh cả sau khi cha dượng mất, ông tiếp tục được cho học đại học (trường Trinity College Cambridge) sau phổ thông vào năm 1661, sử dụng học bổng của trường với điều kiện phải phục dịch các học sinh đóng học phí.

Mục tiêu ban đầu của Newton tại Đại học Cambridge là tấm bằng luật sư với chương trình nặng về triết học của Aristotle, nhưng ông nhanh chóng bị cuốn hút bởi toán học của Descartes, thiên văn học của Galileo và cả quang học của Kepler. Ông đã viết trong thời gian này: "Plato là bạn của tôi, Aristotle là bạn của tôi, nhưng sự thật mới là người bạn thân thiết nhất của tôi". Tuy nhiên, đa phần kiến thức toán học cao cấp nhất thời bấy giờ, Newton tiếp cận được là nhờ đọc thêm sách, đặc biệt là từ sau năm 1663, gồm các cuốn Elementscủa Euclid, Clavis Mathematica của William Oughtred, La Géométrie của Descartes, Geometria a Renato Des Cartes của Frans van Schooten, Algebra của Wallis và các công trình của François Viète.

Ngay sau khi nhận bằng tốt nghiệp, năm 1630, ông phải trở về nhà 2 năm vì trường đóng cửa do bệnh dịch hạch lan truyền. Hai năm này chứng kiến một loạt các phát triển quan trọng của Newton với phương pháp tính vi phân và tích phân hoàn toàn mới, thống nhất và đơn giản hoá nhiều phương pháp tính khác nhau thời bấy giờ để giải quyết những bài toán có vẻ không liên quan trực tiếp đến nhau như tìm diện tích, tìm tiếp tuyến, độ dài đường cong và cực trị của hàm. Tài năng toán học của ông nhanh chóng được hiệu trưởng của Cambridge nhận ra khi trường mở cửa trở lại. Ông được nhận làm giảng viên của trường năm 1670, sau khi hoàn thành thạc sĩ, và bắt đầu nghiên cứu và giảng về quang học. Ông lần đầu chứng minh ánh sáng trắng thực ra được tạo thành bởi nhiều màu sắc, và đưa ra cải tiến cho kính thiên văn sử dụng gương thay thấu kính để hạn chế sự nhoè ảnh do tán sắc ánh sáng qua thuỷ tinh.

📷Isaac Newton ở tuổi già năm 1712, chân dung của Sir James Thornhill

Newton được bầu vào Hội Khoa học Hoàng gia Anh năm 1672 và bắt đầu vấp phải các phản bác từ Huygens và Hooke về lý thuyết hạt ánh sáng của ông. Lý thuyết về màu sắc ánh sáng của ông cũng bị một tác giả phản bác và cuộc tranh cãi đã dẫn đến suy sụp tinh thần cho Newton vào năm 1678. Năm 1679 Newton và Hooke tham gia vào một cuộc tranh luận mới về quỹ đạo của thiên thể trong trọng trường. Năm 1684, Halley thuyết phục được Newton xuất bản các tính toán sau cuộc tranh luận này trong quyển Philosophiae Naturalis Principia Mathematica. Quyển sách đã mang lại cho Newton tiếng tăm vượt ra ngoài nước Anh, đến châu Âu.

Năm 1685, chính trị nước Anh thay đổi dưới sự trị vì của James II, và trường Cambridge phải tuân thủ những điều luật phi lý như buộc phải cấp bằng cho giáo chủ không thông qua thi cử. Newton kịch liệt phản đối những can thiệp này và sau khi James bị William III đánh bại, Newton được bầu vào Nghị viện Anh nhờ những đấu tranh chính trị của ông.

Năm 1693, sau nhiều năm làm thí nghiệm hoá học thất bại và sức khoẻ suy sụp nghiêm trọng, Newton từ bỏ khoa học, rời Cambridge để về nhận chức trong chính quyền tại Luân Đôn. Newton tích cực tham gia hoạt động chính trị và trở nên giàu có nhờ bổng lộc nhà nước. Năm 1703 Newton được bầu làm chủ tịch Hội Khoa học Hoàng gia Anh và giữ chức vụ đó trong suốt phần còn lại của cuộc đời ông. Ông được Nữ hoàng phong bá tước năm 1705. việc ai phát minh ra vi phân và tích phân, Newton và Lepnic không bao giờ tranh luận cả, nhưng các người hâm mộ lại tranh cãi quyết liệt khiến hai nhà khoa học vĩ đại này cảm thấy xấu hổ. Ông mất ngày 31 tháng 3 năm 1727 tại Luân Đôn.

Nghiên cứu khoa học

Quang học

📷Quyển Opticks của Newton📷Minh họa hiện tượng Tán sắc ánh sáng trắng thành nhiều màu khác nhau qua lăng kính, được phát hiện bởi Newton

Từ năm 1670 đến 1672, Newton diễn thuyết về quang học. Trong khoảng thời gian này ông khám phá ra sự tán sắc ánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu, và một thấu kính hay một lăng kính sẽ hội tụ các dãy màu thành ánh sáng trắng.

Newton còn cho thấy rằng ánh sáng màu không thay đổi tính chất, bằng việc phân tích các tia màu và chiếu vào các vật khác nhau. Newton chú ý rằng dù là gì đi nữa, phản xạ, tán xạ hay truyền qua, màu sắc vẫn giữ nguyên. Vì thế màu mà ta quan sát là kết quả vật tương tác với các ánh sáng đã có sẵn màu sắc, không phải là kết quả của vật tạo ra màu.

📷Bản sao kính thiên văn phản xạ thứ hai của Newton mà ông đã trình bày cho Hội khoa học Hoàng gia vào năm 1672

Nhờ vào những khám phá trên, Newton nhận ra nguyên nhân gây ra sự sai lệch màu của hình ảnh trên kính viễn vọng khúc xạ thời đó. Ông đã áp dụng nguyên lý của James Gregory để tạo ra kính viễn vọng phản xạ đầu tiên, khắc phục được nhiều nhược điểm về ảnh của kính viễn vọng khúc xạ đồng thời giảm đi đáng kể chiều dài của kính viễn vọng.

Quả táo Newton

📷Bài này là một bản dịch thô từ ngôn ngữ khác. Đây có thể là kết quả của máy tính hoặc của người chưa thông thạo dịch thuật. Xin hãy giúp tăng chất lượng bản dịch.

Sau khi Newton công bố định luật vạn vật hấp dẫn, giới khoa học lưu truyền câu chuyện quả táo rơi trúng đầu Newton liệu có mối liên hệ giữa khối lượng và khoảng cách của vật thể trong nhà vật lý vĩ đại này. Thế nhưng, nhiều ý kiến cho rằng đó chỉ là câu chuyện thêu dệt, chỉ là một huyền thoại và rằng ông đã không xây dựng lý thuyết về lực hấp dẫn ở bất cứ thời điểm duy nhất nào.

Tuy nhiên, với bản thảo viết tay Memoirs of Life Sir Isaac Newton có từ năm 1752, nhà khoa học William Stukeley (một người quen của Newton) kể lại chi tiết về khoảng khắc khi Newton tìm ra thuyết vạn vật hấp dẫn.

Bài viết của Stukeley kể về những suy nghĩ của Newton về thuyết lực hấp dẫn khi hai người ngồi dưới bóng râm cây táo trong vườn của nhà khoa học, tại Kensington vào ngày 15 tháng 4 năm 1726: [7]

Chúng tôi đã đi vào một khu vườn, và uống trà dưới bóng mát của vườn táo; chỉ có ông, và tôi. Ông nói với tôi, chính ở vị trí này, vào thuở trước khái niệm về lực hấp dẫn đã đến trong tâm trí.Thời điểm đó ông đang ngồi chiêm nghiệm và một quả táo rơi xuống. Ông đã nghĩ tại sao quả táo lại rơi thẳng xuống đất?

Quả táo chín rồi, tại sao lại rơi xuống đất? Tại vì gió thổi chăng? Không phải, khoảng không rộng mênh mông, tại sao lại phải rơi xuống mà không bay lên trời? Như vậy trái đất có cái gì hút nó sao? Mọi vật trên trái đất đều có sức nặng, hòn đã ném đi rốt cuộc lại rơi xuống đất, trọng lượng của mọi vật có phải là kết quả của lực hút trái đất không?

Tại sao nó không đi ngang, hoặc đi lên ? Nhưng lại liên tục đến trung tâm trái đất ? Chắc chắn, không lý nào khác rằng trái đất đã hút nó. Phải có một sức mạnh hút kéo vật chất & tổng sức mạnh hút kéo trong vấn đề trái đất phải được ở trung tâm đất, không phải trong bất kỳ bên của trái đất do đó đó quả táo này có rơi vuông góc, hay hướng về trung tâm nếu có vấn đề do đó hút lấy vật chất.. nó phải được cân đối với lượng của nó do đó táo rút ra trái đất., cũng như trái đất thu hút sự táo.

John Conduitt, trợ lý của Newton tại Royal Mint và chồng của cô cháu gái của Newton, cũng mô tả các sự kiện khi ông đã viết về cuộc sống của Newton:

Vào năm 1666, ông nghỉ hưu từ Cambridge với mẹ ông ở Lincolnshire. Trong khi đang lang thang trầm tư trong vườn, thì đến hiện ý tưởng rằng sức mạnh của lực hấp dẫn (đã mang quả táo từ trên cây rơi xuống đất) không bị giới hạn trong một khoảng cách nhất định từ trái đất, nhưng sức mạnh này phải trải rộng ra xa hơn là thường nghĩ. Tại sao không cao như mặt trăng nói ông đến mình, và nếu như vậy, mà phải ảnh hưởng đến chuyển động của mặt trăng và có lẽ giữ lại trong quỹ đạo của nó, từ đó ông lao vào tính toán những gì sẽ là kết quả của giả thiết đó.

Trong một việc tương tự, Voltaire đã viết trong cuốn tiểu luận về Epic Thơ (1727), "Sir Isaac Newton đi bộ trong khu vườn của mình, có những suy nghĩ đầu tiên của hệ thống hấp dẫn của ông, khi thấy một quả táo rơi xuống từ một cây."

Newton đã phải vật lộn trong cuối thập kỷ 1660 với ý tưởng rằng lực hấp dẫn tương tác trên mặt đất, trong một tỷ lệ nghịch với bình phương khoảng cách; Tuy nhiên ông đã phải mất hai thập kỷ để phát triển các lý thuyết đầy đủ. Câu hỏi đặt ra không phải là liệu trọng lực tồn tại, nhưng liệu nó có mở rộng để cách xa Trái đất mà nó còn có thể là lực giữ mặt trăng trên quỹ đạo của nó. Newton đã chỉ ra rằng nếu lực tương tác giảm tỉ lệ nghịch với khoảng cách, người ta có thể tính toán chu kỳ quỹ đạo của Mặt trăng một cách thống nhất. Ông đoán một loại lực chung là nguyên do của mọi chuyển động quỹ đạo, và do đó đặt tên nó là "lực vạn vật hấp dẫn".

Sau này Newton nêu ra: Mọi vật trên trái đất đều chịu sức hút của trái đất, mặt trăng cũng chịu sức hút của trái đất, đồng thời trái đất cũng chịu sức hút của mặt trăng; Trái đất chịu sức hút của mặt trời, mặt trời đồng thời cũng chịu sức hút của trái đất. Nói một cách khác là vạn vật trong vũ trụ đều có lực hấp dẫn lẫn nhau, vì có loại lực hấp dẫn này mà mặt trăng mới quay quanh trái đất, trái đất mới quay quanh mặt trời.

Tác phẩm

Xuất bản khi sinh thời

De analysi per aequationes numero terminorum infinitas (1669, published 1711)

Method of Fluxions (1671)

Of Natures Obvious Laws & Processes in Vegetation (unpublished, c. 1671–75)[8]

De motu corporum in gyrum (1684)

Philosophiæ Naturalis Principia Mathematica (1687)

Opticks (1704)

Reports as Master of the Mint (1701–25)

Arithmetica Universalis (1707)

Xuất bản sau khi qua đời

The System of the World (1728)

Optical Lectures (1728)

The Chronology of Ancient Kingdoms Amended (1728)

De mundi systemate (1728)

Observations on Daniel and The Apocalypse of St. John (1733)

Newton, Isaac (1991). Robinson, Arthur B., biên tập. Observations upon the Prophecies of Daniel, and the Apocalypse of St. John. Cave Junction, Oregon: Oregon Institute of Science and Medicine. ISBN 0-942487-02-8. (A facsimile edition of the 1733 work.)

An Historical Account of Two Notable Corruptions of Scripture (1754)

0
*Isaac Newton Jr. Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.Luận...
Đọc tiếp

*Isaac Newton Jr.

Isaac Newton Jr. là một nhà vật lý, nhà thiên văn học, nhà triết học, nhà toán học, nhà thần học và nhà giả kim thuật người Anh, được nhiều người cho rằng là nhà khoa học vĩ đại và có tầm ảnh hưởng lớn nhất.[2] Theo lịch Julius, ông sinh ngày 25 tháng 12năm 1642 và mất ngày 20 tháng 3 năm 1727; theo lịch Gregory, ông sinh ngày 4 tháng 1 năm 1643 và mất ngày 31 tháng 3 năm 1727.

Luận thuyết của ông về Philosophiae Naturalis Principia Mathematica (Các Nguyên lý Toán học của Triết học Tự nhiên) xuất bản năm 1687, đã mô tả về vạn vật hấp dẫn và 3 định luật Newton, được coi là nền tảng của cơ học cổ điển, đã thống trị các quan niệm về vật lý, khoa học trong suốt 3 thế kỷ tiếp theo. ông cho rằng sự chuyển động của các vật thể trên mặt đất và các vật thể trong bầu trời bị chi phối bởi các định luật tự nhiên giống nhau; bằng cách chỉ ra sự thống nhất giữa Định luật Kepler về sự chuyển động của hành tinh và lý thuyết của ông về trọng lực, ông đã loại bỏ hoàn toàn Thuyết nhật tâm và theo đuổi cách mạng khoa học.

Trong cơ học, Newton đưa ra nguyên lý bảo toàn động lượng (bảo toàn quán tính). Trong quang học, ông khám phá ra sự tán sắcánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu.

Trong toán học, Newton cùng với Gottfried Leibniz phát triển phép tính vi phân và tích phân. Ông cũng đưa ra nhị thức Newton tổng quát.

Năm 2005, trong một cuộc thăm dò ý kiến của Hội Hoàng gia về nhân vật có ảnh hưởng lớn nhất trong lịch sử khoa học, Newton vẫn là người được cho rằng có nhiều ảnh hưởng hơn Albert Einstein.[3]

Sự nghiệp

📷Newton năm 1702, vẽ bởi Godfrey Kneller

Isaac Newton sinh ra trong một gia đình nông dân. Khi ông ở quãng tuổi từ khoảng 12 đến 17, ông học tại King's School, Grantham, nơi mà ông chỉ học tiếng Latinh và không có Toán. Sau đó, ông rời khỏi trường và đến tháng 10 năm 1659, ông có mặt tại Woolsthorpe-by-Colsterworth, nơi mà mẹ ông, lần thứ hai góa bụa, đang cố gắng khiến ông trở thành một nông dân. Nhưng Newton lại ghét việc đồng áng. Henry Stocks, thầy của ông tại King's School, đã thuyết phục mẹ ông cho ông quay trở lại trường học để ông có thể tiếp tục việc học của mình.

Vào tháng 6 năm 1661, Newton được gửi tới Đại học Cambridge để trở thành luật sư. Tại Cambridge, Newton bị ấn tượng mạnh từ trường phái Euclid, tuy rằng tư duy của ông cũng bị ảnh hưởng bởi trường phái của Roger Bacon và René Descartes. Một đợt dịch bệnh đã khiến trường Cambridge đóng cửa và trong thời gian ở nhà, Newton đã có những phát kiến khoa học quan trọng, dù chúng không được công bố ngay.

Những người có ảnh hưởng đến việc công bố các công trình của Newton là Robert Hooke và Edmond Halley. Sau một cuộc tranh luận về chủ đề quỹ đạo của một hạt khi bay từ vũ trụ vào Trái Đất với Hooke, Newton đã bị cuốn hút vào việc sử dụng định luật vạn vật hấp dẫn và cơ học của ông trong tính toán quỹ đạo Johannes Kepler. Những kết quả này hấp dẫn Halley và ông đã thuyết phục được Newton xuất bản chúng. Từ tháng 8 năm 1684 đến mùa xuân năm 1688, Newton hoàn thành tác phẩm, mà sau này trở thành một trong những công trình nền tảng quan trọng nhất cho vật lý của mọi thời đại, cuốn Philosophiae Naturalis Principia Mathematica.

Trong quyển I của tác phẩm này, Newton giới thiệu các định nghĩa và ba định luật của chuyển động thường được biết với tên gọi sau này là Định luật Newton. Quyển II trình bày các phương pháp luận khoa học mới của Newton thay thế cho triết lý Descartes. Quyển cuối cùng là các ứng dụng của lý thuyết động lực học của ông, trong đó có sự giải thích về thủy triều và lý thuyết về sự chuyển động của Mặt Trăng. Để kiểm chứng lý thuyết về vạn vật hấp dẫn của ông, Newton đã hỏi nhà thiên văn John Flamsteedkiểm tra xem Sao Thổ có chuyển động chậm lại mỗi lần đi gần Sao Mộc không. Flamsteed đã rất sửng sốt nhận ra hiệu ứng này có thật và đo đạc phù hợp với các tính toán của Newton. Các phương trình của Newton được củng cố thêm bằng kết quả quan sát về hình dạng bẹt của Trái Đất tại hai cực, thay vì lồi ra tại hai cực như đã tiên đoán bởi trường phái Descartes. Phương trình của Newton cũng miêu tả được gần đúng chuyển động Mặt Trăng, và tiên đoán chính xác thời điểm quay lại của sao chổi Halley. Trong các tính toán về hình dạng của một vật ít gây lực cản nhất khi nằm trong dòng chảy của chất lỏng hay chất khí, Newton cũng đã viết ra và giải được bài toán giải tích biến phân đầu tiên của thế giới.

Newton sáng tạo ra một phương pháp khoa học rất tổng quát. Ông trình bày phương pháp luận của ông thành bốn quy tắc của lý luận khoa học. Các quy tắc này được phát biểu trong quyển Philosophiae Naturalis Principia Mathematica như sau:

Các hiện tượng tự nhiên phải được giải thích bằng một hệ tối giản các quy luật đúng, vừa đủ và chặt chẽ.

Các hiện tượng tự nhiên giống nhau phải có cùng nguyên nhân như nhau.

Các tính chất của vật chất là như nhau trong toàn vũ trụ.

Một nhận định rút ra từ quan sát tự nhiên chỉ được coi là đúng cho đến khi có một thực nghiệm khác mâu thuẫn với nó.

Bốn quy tắc súc tích và tổng quát cho nghiên cứu khoa học này đã là một cuộc cách mạng về tư duy thực sự vào thời điểm bấy giờ. Thực hiện các quy tắc này, Newton đã hình thành được các định luật tổng quát của tự nhiên và giải thích được gần như tất cả các bài toán khoa học vào thời của ông. Newton còn đi xa hơn việc chỉ đưa ra các quy tắc cho lý luận, ông đã miêu tả cách áp dụng chúng trong việc giải quyết một bài toán cụ thể. Phương pháp giải tích mà ông sáng tạo vượt trội các phương pháp mang tính triết lý hơn là tính chính xác khoa học của Aristoteles và Thomas Aquinas. Newton đã hoàn thiện phương pháp thực nghiệm của Galileo Galilei, tạo ra phương pháp tổng hợp vẫn còn được sử dụng cho đến ngày nay trong khoa học. Những câu chữ sau đây trong quyển Opticks(Quang học) của ông có thể dễ dàng bị nhầm lẫn với trình bày hiện đại của phương pháp nghiên cứu thời nay, nếu Newton dùng từ "khoa học" thay cho "triết lý về tự nhiên":

Cũng như trong toán học, trong triết lý về tự nhiên, việc nghiên cứu các vấn đề hóc búa cần thực hiện bằng phương pháp phân tích và tổng hợp. Nó bao gồm làm thí nghiệm, quan sát, đưa ra những kết luận tổng quát, từ đó suy diễn. Phương pháp này sẽ giúp ta đi từ các hợp chất phức tạp đến nguyên tố, đi từ chuyển động đến các lực tạo ra nó; và tổng quát là từ các hiện tượng đến nguyên nhân, từ nguyên nhân riêng lẻ đến nguyên nhân tổng quát, cho đến khi lý luận dừng lại ở mức tổng quát nhất. Tổng hợp lại các nguyên nhân chúng ta đã khám phá ra thành các nguyên lý, chúng ta có thể sử dụng chúng để giải thích các hiện tượng hệ quả.

Newton đã xây dựng lý thuyết cơ học và quang học cổ điển và sáng tạo ra giải tích nhiều năm trước Gottfried Leibniz. Tuy nhiên ông đã không công bố công trình về giải tích trước Leibniz. Điều này đã gây nên một cuộc tranh cãi giữa Anh và lục địa châu Âu suốt nhiều thập kỷ về việc ai đã sáng tạo ra giải tích trước. Newton đã phát hiện ra định lý nhị thức đúng cho các tích của phân số, nhưng ông đã để cho John Wallis công bố. Newton đã tìm ra một công thức cho vận tốc âm thanh, nhưng không phù hợp với kết quả thí nghiệm của ông. Lý do cho sự sai lệch này nằm ở sự giãn nở đoạn nhiệt, một khái niệm chưa được biết đến thời bấy giờ. Kết quả của Newton thấp hơn γ½ lần thực tế, với γ là tỷ lệ các nhiệt dung của không khí.

Theo quyển Opticks, mà Newton đã chần chừ trong việc xuất bản mãi cho đến khi Hooke mất, Newton đã quan sát thấy ánh sáng trắng bị chia thành phổ nhiều màu sắc, khi đi qua lăng kính (thuỷ tinh của lăng kính có chiết suất thay đổi tùy màu). Quan điểm hạt về ánh sáng của Newton đã xuất phát từ các thí nghiệm mà ông đã làm với lăng kính ở Cambridge. Ông thấy các ảnh sau lăng kính có hình bầu dục chứ không tròn như lý thuyết ánh sáng thời bấy giờ tiên đoán. Ông cũng đã lần đầu tiên quan sát thấy các vòng giao thoa mà ngày nay gọi là vòng Newton, một bằng chứng của tính chất sóng của ánh sáng mà Newton đã không công nhận. Newton đã cho rằng ánh sáng đi nhanh hơn trong thuỷ tinh, một kết luận trái với lý thuyết sóng ánh sáng của Christiaan Huygens.

Newton cũng xây dựng một hệ thống hoá học trong mục 31 cuối quyển Opticks. Đây cũng là lý thuyết hạt, các "nguyên tố" được coi như các sự sắp xếp khác nhau của những nguyên tử nhỏ và cứng như các quả bi-a. Ông giải thích phản ứng hoá học dựa vào ái lực giữa các thành phần tham gia phản ứng. Cuối đời (sau 1678) ông thực hiện rất nhiều các thí nghiệm hoá học vô cơ mà không ra kết quả gì.

Newton rất nhạy cảm với các phản bác đối với các lý thuyết của ông, thậm chí đến mức không xuất bản các công trình cho đến tận sau khi người hay phản bác ông nhất là Hooke mất. Quyển Philosophiae Naturalis Principia Mathematica phải chờ sự thuyết phục của Halley mới ra đời. Ông tỏ ra ngày càng lập dị vào cuối đời khi thực hiện các phản ứng hoá học và cùng lúc xác định ngày tháng cho các sự kiện trong Kinh Thánh. Sau khi Newton qua đời, người ta tìm thấy một lượng lớn thuỷ ngân trong cơ thể của ông, có thể bị nhiễm trong lúc làm thí nghiệm. Điều này hoàn toàn có thể giải thích sự lập dị của Newton.

Newton đã một mình đóng góp cho khoa học nhiều hơn bất cứ một nhân vật nào trong lịch sử của loài người. Ông đã vượt trên tất cả những bộ óc khoa học lớn của thế giới cổ đại, tạo nên một miêu tả cho vũ trụ không tự mâu thuẫn, đẹp và phù hợp với trực giác hơn mọi lý thuyết có trước. Newton đưa ra cụ thể các nguyên lý của phương pháp khoa học có thể ứng dụng tổng quát vào mọi lĩnh vực của khoa học. Đây là điều tương phản lớn so với các phương pháp riêng biệt cho mỗi lĩnh vực của Aristoteles và Aquinas trước đó.

Ngoài việc nghiên cứu khoa học, Newton dùng phần lớn thời gian để nghiên cứu Kinh Thánh, ông tin nhận một Chúa Trời duy nhất là Đấng tạo hóa siêu việt mà người ta không thể phủ nhận sự hiện hữu của ngài khi nhìn ngắm vẻ hùng vĩ của mọi tạo vật.[4][5] Mặc dù được trưởng dưỡng trong một gia đình Anh giáo nhưng vào độ tuổi ba mươi của mình, niềm tin Kitô giáo của Newton nếu công khai ra sẽ không được coi là chính thống.[6]

Cũng có các nhà triết học trước như Galileo và John Philoponus sử dụng phương pháp thực nghiệm, nhưng Newton là người đầu tiên định nghĩa cụ thể và hệ thống cách sử dụng phương pháp này. Phương pháp của ông cân bằng giữa lý thuyết và thực nghiệm, giữa toán học và cơ học. Ông toán học hoá mọi khoa học về tự nhiên, đơn giản hoá chúng thành các bước chặt chẽ, tổng quát và hợp lý, tạo nên sự bắt đầu của Kỷ nguyên Suy luận. Những nguyên lý mà Newton đưa ra do đó vẫn giữ nguyên giá trị cho đến thời đại ngày nay. Sau khi ông ra đi, những phương pháp của ông đã mang lại những thành tựu khoa học lớn gấp bội những gì mà ông có thể tưởng tượng lúc sinh thời. Các thành quả này là nền tảng cho nền công nghệ mà chúng ta được hưởng ngày nay.

Không ngoa dụ chút nào khi nói rằng Newton là danh nhân quan trọng nhất đóng góp cho sự phát triển của khoa học hiện đại. Như nhà thơ Alexander Pope đã viết:

Nature and nature's laws lay hid in night;God said "Let Newton be" and all was light.Tự nhiên và luật tự nhiên lẩn khuất trong màn đêm phủ;Chúa phán: Newton hãy xuất hiện! Và mọi thứ chói lòa.

Tiểu sử

📷Quyển Philosophiae Naturalis Principia Mathematica của Newton📷Isaac Newton (Bolton, Sarah K. Famous Men of Science NY: Thomas Y. Crowell & Co., 1889)

Isaac Newton sinh ra tại một ngôi nhà ở Woolsthorpe, gần Grantham ở Lincolnshire, Anh, vào ngày 25 tháng 12 năm 1642 (4 tháng 1 năm 1643 theo lịch mới). Ông chưa một lần nhìn thấy mặt cha, do cha ông, một nông dân cũng tên là Isaac Newton Sr., mất trước khi ông sinh ra không lâu. Sống không hạnh phúc với cha dượng từ nhỏ, Newton bắt đầu những năm học phổ thông trầm uất, xa nhà và bị gián đoạn bởi các biến cố gia đình. May mắn là do không có khả năng điều hành tài chính trong vai anh cả sau khi cha dượng mất, ông tiếp tục được cho học đại học (trường Trinity College Cambridge) sau phổ thông vào năm 1661, sử dụng học bổng của trường với điều kiện phải phục dịch các học sinh đóng học phí.

Mục tiêu ban đầu của Newton tại Đại học Cambridge là tấm bằng luật sư với chương trình nặng về triết học của Aristotle, nhưng ông nhanh chóng bị cuốn hút bởi toán học của Descartes, thiên văn học của Galileo và cả quang học của Kepler. Ông đã viết trong thời gian này: "Plato là bạn của tôi, Aristotle là bạn của tôi, nhưng sự thật mới là người bạn thân thiết nhất của tôi". Tuy nhiên, đa phần kiến thức toán học cao cấp nhất thời bấy giờ, Newton tiếp cận được là nhờ đọc thêm sách, đặc biệt là từ sau năm 1663, gồm các cuốn Elements của Euclid, Clavis Mathematica của William Oughtred, La Géométrie của Descartes, Geometria a Renato Des Cartes của Frans van Schooten, Algebra của Wallis và các công trình của François Viète.

Ngay sau khi nhận bằng tốt nghiệp, năm 1630, ông phải trở về nhà 2 năm vì trường đóng cửa do bệnh dịch hạch lan truyền. Hai năm này chứng kiến một loạt các phát triển quan trọng của Newton với phương pháp tính vi phân và tích phân hoàn toàn mới, thống nhất và đơn giản hoá nhiều phương pháp tính khác nhau thời bấy giờ để giải quyết những bài toán có vẻ không liên quan trực tiếp đến nhau như tìm diện tích, tìm tiếp tuyến, độ dài đường cong và cực trị của hàm. Tài năng toán học của ông nhanh chóng được hiệu trưởng của Cambridge nhận ra khi trường mở cửa trở lại. Ông được nhận làm giảng viên của trường năm 1670, sau khi hoàn thành thạc sĩ, và bắt đầu nghiên cứu và giảng về quang học. Ông lần đầu chứng minh ánh sáng trắng thực ra được tạo thành bởi nhiều màu sắc, và đưa ra cải tiến cho kính thiên văn sử dụng gương thay thấu kính để hạn chế sự nhoè ảnh do tán sắc ánh sáng qua thuỷ tinh.

📷Isaac Newton ở tuổi già năm 1712, chân dung của Sir James Thornhill

Newton được bầu vào Hội Khoa học Hoàng gia Anh năm 1672 và bắt đầu vấp phải các phản bác từ Huygens và Hooke về lý thuyết hạt ánh sáng của ông. Lý thuyết về màu sắc ánh sáng của ông cũng bị một tác giả phản bác và cuộc tranh cãi đã dẫn đến suy sụp tinh thần cho Newton vào năm 1678. Năm 1679 Newton và Hooke tham gia vào một cuộc tranh luận mới về quỹ đạo của thiên thể trong trọng trường. Năm 1684, Halley thuyết phục được Newton xuất bản các tính toán sau cuộc tranh luận này trong quyển Philosophiae Naturalis Principia Mathematica. Quyển sách đã mang lại cho Newton tiếng tăm vượt ra ngoài nước Anh, đến châu Âu.

Năm 1685, chính trị nước Anh thay đổi dưới sự trị vì của James II, và trường Cambridge phải tuân thủ những điều luật phi lý như buộc phải cấp bằng cho giáo chủ không thông qua thi cử. Newton kịch liệt phản đối những can thiệp này và sau khi James bị William III đánh bại, Newton được bầu vào Nghị viện Anh nhờ những đấu tranh chính trị của ông.

Năm 1693, sau nhiều năm làm thí nghiệm hoá học thất bại và sức khoẻ suy sụp nghiêm trọng, Newton từ bỏ khoa học, rời Cambridge để về nhận chức trong chính quyền tại Luân Đôn. Newton tích cực tham gia hoạt động chính trị và trở nên giàu có nhờ bổng lộc nhà nước. Năm 1703 Newton được bầu làm chủ tịch Hội Khoa học Hoàng gia Anh và giữ chức vụ đó trong suốt phần còn lại của cuộc đời ông. Ông được Nữ hoàng phong bá tước năm 1705. việc ai phát minh ra vi phân và tích phân, Newton và Lepnic không bao giờ tranh luận cả, nhưng các người hâm mộ lại tranh cãi quyết liệt khiến hai nhà khoa học vĩ đại này cảm thấy xấu hổ. Ông mất ngày 31 tháng 3 năm 1727 tại Luân Đôn.

Nghiên cứu khoa học

Quang học

📷Quyển Opticks của Newton📷Minh họa hiện tượng Tán sắc ánh sáng trắng thành nhiều màu khác nhau qua lăng kính, được phát hiện bởi Newton

Từ năm 1670 đến 1672, Newton diễn thuyết về quang học. Trong khoảng thời gian này ông khám phá ra sự tán sắc ánh sáng, giải thích việc ánh sáng trắng qua lăng kính trở thành nhiều màu, và một thấu kính hay một lăng kính sẽ hội tụ các dãy màu thành ánh sáng trắng.

Newton còn cho thấy rằng ánh sáng màu không thay đổi tính chất, bằng việc phân tích các tia màu và chiếu vào các vật khác nhau. Newton chú ý rằng dù là gì đi nữa, phản xạ, tán xạ hay truyền qua, màu sắc vẫn giữ nguyên. Vì thế màu mà ta quan sát là kết quả vật tương tác với các ánh sáng đã có sẵn màu sắc, không phải là kết quả của vật tạo ra màu.

📷Bản sao kính thiên văn phản xạ thứ hai của Newton mà ông đã trình bày cho Hội khoa học Hoàng gia vào năm 1672

Nhờ vào những khám phá trên, Newton nhận ra nguyên nhân gây ra sự sai lệch màu của hình ảnh trên kính viễn vọng khúc xạ thời đó. Ông đã áp dụng nguyên lý của James Gregory để tạo ra kính viễn vọng phản xạ đầu tiên, khắc phục được nhiều nhược điểm về ảnh của kính viễn vọng khúc xạ đồng thời giảm đi đáng kể chiều dài của kính viễn vọng.

Quả táo Newton

📷Bài này là một bản dịch thô từ ngôn ngữ khác. Đây có thể là kết quả của máy tính hoặc của người chưa thông thạo dịch thuật. Xin hãy giúp tăng chất lượng bản dịch.

Sau khi Newton công bố định luật vạn vật hấp dẫn, giới khoa học lưu truyền câu chuyện quả táo rơi trúng đầu Newton liệu có mối liên hệ giữa khối lượng và khoảng cách của vật thể trong nhà vật lý vĩ đại này. Thế nhưng, nhiều ý kiến cho rằng đó chỉ là câu chuyện thêu dệt, chỉ là một huyền thoại và rằng ông đã không xây dựng lý thuyết về lực hấp dẫn ở bất cứ thời điểm duy nhất nào.

Tuy nhiên, với bản thảo viết tay Memoirs of Life Sir Isaac Newton có từ năm 1752, nhà khoa học William Stukeley (một người quen của Newton) kể lại chi tiết về khoảng khắc khi Newton tìm ra thuyết vạn vật hấp dẫn.

Bài viết của Stukeley kể về những suy nghĩ của Newton về thuyết lực hấp dẫn khi hai người ngồi dưới bóng râm cây táo trong vườn của nhà khoa học, tại Kensington vào ngày 15 tháng 4 năm 1726: [7]

Chúng tôi đã đi vào một khu vườn, và uống trà dưới bóng mát của vườn táo; chỉ có ông, và tôi. Ông nói với tôi, chính ở vị trí này, vào thuở trước khái niệm về lực hấp dẫn đã đến trong tâm trí.Thời điểm đó ông đang ngồi chiêm nghiệm và một quả táo rơi xuống. Ông đã nghĩ tại sao quả táo lại rơi thẳng xuống đất?

Quả táo chín rồi, tại sao lại rơi xuống đất? Tại vì gió thổi chăng? Không phải, khoảng không rộng mênh mông, tại sao lại phải rơi xuống mà không bay lên trời? Như vậy trái đất có cái gì hút nó sao? Mọi vật trên trái đất đều có sức nặng, hòn đã ném đi rốt cuộc lại rơi xuống đất, trọng lượng của mọi vật có phải là kết quả của lực hút trái đất không?

Tại sao nó không đi ngang, hoặc đi lên ? Nhưng lại liên tục đến trung tâm trái đất ? Chắc chắn, không lý nào khác rằng trái đất đã hút nó. Phải có một sức mạnh hút kéo vật chất & tổng sức mạnh hút kéo trong vấn đề trái đất phải được ở trung tâm đất, không phải trong bất kỳ bên của trái đất do đó đó quả táo này có rơi vuông góc, hay hướng về trung tâm nếu có vấn đề do đó hút lấy vật chất.. nó phải được cân đối với lượng của nó do đó táo rút ra trái đất., cũng như trái đất thu hút sự táo.

John Conduitt, trợ lý của Newton tại Royal Mint và chồng của cô cháu gái của Newton, cũng mô tả các sự kiện khi ông đã viết về cuộc sống của Newton:

Vào năm 1666, ông nghỉ hưu từ Cambridge với mẹ ông ở Lincolnshire. Trong khi đang lang thang trầm tư trong vườn, thì đến hiện ý tưởng rằng sức mạnh của lực hấp dẫn (đã mang quả táo từ trên cây rơi xuống đất) không bị giới hạn trong một khoảng cách nhất định từ trái đất, nhưng sức mạnh này phải trải rộng ra xa hơn là thường nghĩ. Tại sao không cao như mặt trăng nói ông đến mình, và nếu như vậy, mà phải ảnh hưởng đến chuyển động của mặt trăng và có lẽ giữ lại trong quỹ đạo của nó, từ đó ông lao vào tính toán những gì sẽ là kết quả của giả thiết đó.

Trong một việc tương tự, Voltaire đã viết trong cuốn tiểu luận về Epic Thơ (1727), "Sir Isaac Newton đi bộ trong khu vườn của mình, có những suy nghĩ đầu tiên của hệ thống hấp dẫn của ông, khi thấy một quả táo rơi xuống từ một cây."

Newton đã phải vật lộn trong cuối thập kỷ 1660 với ý tưởng rằng lực hấp dẫn tương tác trên mặt đất, trong một tỷ lệ nghịch với bình phương khoảng cách; Tuy nhiên ông đã phải mất hai thập kỷ để phát triển các lý thuyết đầy đủ. Câu hỏi đặt ra không phải là liệu trọng lực tồn tại, nhưng liệu nó có mở rộng để cách xa Trái đất mà nó còn có thể là lực giữ mặt trăng trên quỹ đạo của nó. Newton đã chỉ ra rằng nếu lực tương tác giảm tỉ lệ nghịch với khoảng cách, người ta có thể tính toán chu kỳ quỹ đạo của Mặt trăng một cách thống nhất. Ông đoán một loại lực chung là nguyên do của mọi chuyển động quỹ đạo, và do đó đặt tên nó là "lực vạn vật hấp dẫn".

Sau này Newton nêu ra: Mọi vật trên trái đất đều chịu sức hút của trái đất, mặt trăng cũng chịu sức hút của trái đất, đồng thời trái đất cũng chịu sức hút của mặt trăng; Trái đất chịu sức hút của mặt trời, mặt trời đồng thời cũng chịu sức hút của trái đất. Nói một cách khác là vạn vật trong vũ trụ đều có lực hấp dẫn lẫn nhau, vì có loại lực hấp dẫn này mà mặt trăng mới quay quanh trái đất, trái đất mới quay quanh mặt trời.

Tác phẩm

Xuất bản khi sinh thời

De analysi per aequationes numero terminorum infinitas (1669, published 1711)

Method of Fluxions (1671)

Of Natures Obvious Laws & Processes in Vegetation (unpublished, c. 1671–75)[8]

De motu corporum in gyrum (1684)

Philosophiæ Naturalis Principia Mathematica (1687)

Opticks (1704)

Reports as Master of the Mint (1701–25)

Arithmetica Universalis (1707)

Xuất bản sau khi qua đời

The System of the World (1728)

Optical Lectures (1728)

The Chronology of Ancient Kingdoms Amended (1728)

De mundi systemate (1728)

Observations on Daniel and The Apocalypse of St. John (1733)

Newton, Isaac (1991). Robinson, Arthur B., biên tập. Observations upon the Prophecies of Daniel, and the Apocalypse of St. John. Cave Junction, Oregon: Oregon Institute of Science and Medicine. ISBN 0-942487-02-8. (A facsimile edition of the 1733 work.)

An Historical Account of Two Notable Corruptions of Scripture (1754)

0
18 tháng 8 2019

thứ 2 del thấy câu tl

19 tháng 8 2019

tui nghĩ là nghi phạm 1