Bài 1: Ba bạn Toán, Tuổi và Thơ có một số vở. Nếu lấy 40% số vở của Toán chia đều cho Tuổi và Thơ thì số vở của ba bạn bằng nhau. Nhưng nếu Toán bớt đi 5 quyển thì số vở của Toán bằng tổng số vở của Tuổi và Thơ. Hỏi mỗi bạn có bao nhiêu quyển vở?Bài 2: Hình bình hành ABCD có cạnh đáy AB = 6cm, BC = 4cm, với M; N; P; Q lần lượt là trung điểm của các cạnh AB; BC; AD; BC. Hỏi: a) Hình...
Đọc tiếp
Bài 1: Ba bạn Toán, Tuổi và Thơ có một số vở. Nếu lấy 40% số vở của Toán chia đều cho Tuổi và Thơ thì số vở của ba bạn bằng nhau. Nhưng nếu Toán bớt đi 5 quyển thì số vở của Toán bằng tổng số vở của Tuổi và Thơ. Hỏi mỗi bạn có bao nhiêu quyển vở?
Bài 2: Hình bình hành ABCD có cạnh đáy AB = 6cm, BC = 4cm, với M; N; P; Q lần lượt là trung điểm của các cạnh AB; BC; AD; BC. Hỏi:
a) Hình trên có tất cả bao nhiêu hình bình hành?
b) Tổng chu vi của tất cả hình bình hành trên bằng bao nhiêu?
Bài 3: Cho tam giác ABC, trên AC lấy điểm N sao cho AN = 4/1 AC, trên BC lấy điểm M sao cho BM = MC. Kéo dài AB và MN cắt nhau ở P. a) Tính diện tích tam giác ABC, biết diện tích tam giác APN bằng 100cm2 .
b) So sánh PN và NM.
Bài 4: Cho tứ giác ABCD có diện tích 928m2 . Trên AB lấy điểm M. Nối M với C. Từ B kẻ đường thẳng song song với MC gặp DC kéo dài tại E. Nối A với E. Trên AE lấy điểm chính giữa I. Nối I với M, I với D. Tìm diện tích tứ giác AMID.
Bài 5: Cho tam giác ABC, M là điểm trên cạnh BC sao cho BM = 2 x MC. N là điểm trên cạnh AC sao cho CN = 3 x NA. AM cắt BN tại O. Hãy tính diện tích tam giác ABC, nếu biết diện tích tam giác AOB = 20cm2 .
Bài 6: Cho tam giác ABC, trên cạnh BC lấy điểm D sao cho BD gấp đôi DC. Nối A với D, lấy điểm E bất kì trên cạnh AD. Nối EB và EC. Hãy so sánh diện tích hai tam giác BAE và CAE.
cái này trong đề ôn thi của mình lên thcs á
a: Vì MB=MC
nên M là trung điểm của BC
=>\(S_{EBM}=S_{EMC}=\dfrac{S_{BEC}}{2}=210\left(cm^2\right)\)
Vì AD=DE=EM
nên \(AE=\dfrac{2}{3}AM\)
Xét ΔABC có
AM là đường trung tuyến
\(AE=\dfrac{2}{3}AM\)
Do đó: E là trọng tâm của ΔABC
Các tam giác có chung đỉnh A là ΔABD,ΔABE,ΔABM;ΔACD;ΔACE;ΔACM;ΔABC
Vì AD=DE=EM
và AD+DE+EM=AM
nên \(AD=DE=EM=\dfrac{1}{3}AM\)
=>\(S_{ABD}=S_{BDE}=S_{EBM}=210\left(cm^2\right)\)
\(S_{ABE}=S_{ABD}+S_{BDE}=420\left(cm^2\right)\)
\(S_{ABM}=S_{ABD}+S_{BDE}+S_{EBM}=630\left(cm^2\right)\)
Vì AD=DE=EM
nên \(S_{ACD}=S_{DCE}=S_{EMC}=210\left(cm^2\right)\)
\(S_{AEC}=S_{ADC}+S_{DEC}=420\left(cm^2\right)\)
\(S_{AMC}=S_{ADC}+S_{DEC}+S_{EMC}=630\left(cm^2\right)\)
\(S_{ABC}=S_{AMB}+S_{AMC}=1260\left(cm^2\right)\)
b: Xét ΔABC có
E là trọng tâm
BE cắt AC tại N
Do đó: N là trung điểm của AC(ĐPCM)