K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

a: Xét ΔABD và ΔACD có

AB=AC

\(\widehat{BAD}=\widehat{CAD}\)

AD chung

Do đó: ΔABD=ΔACD

b: Xét ΔBAC có \(\widehat{EAC}\) là góc ngoài tại đỉnh A

nên \(\widehat{EAC}=\widehat{ABC}+\widehat{ACB}=2\cdot\widehat{ABC}\)(1)

Ta có: AF là phân giác của góc EAC

=>\(\widehat{EAC}=2\cdot\widehat{EAF}=2\cdot\widehat{FAC}\)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{EAF}=\widehat{ACB}\)

Ta có: \(\widehat{EAF}=\widehat{ABC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên AF//BC

c: Xét ΔEAF và ΔABD có

EA=AB

\(\widehat{EAF}=\widehat{ABD}\)

AF=BD

Do đó: ΔEAF=ΔABD

=>EF=AD

d: Ta có: ΔABD=ΔACD

=>BD=CD và \(\widehat{ADB}=\widehat{ADC}\)

Ta có: \(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)

nên \(\widehat{ADB}=\widehat{ADC}=90^0\)

=>AD\(\perp\)BC

Ta có: AF//BC

D\(\in\)BC

Do đó: AF//CD

Ta có: AF=BD

BD=CD

Do đó: AF=CD

Xét tứ giác ADCF có

AF//CD

AF=CD

Do đó: ADCF là hình bình hành

Hình bình hành ADCF có \(\widehat{ADC}=90^0\)

nên ADCF là hình chữ nhật

=>\(\widehat{AFC}=90^0\)

Ta có: ΔEAF=ΔABD

=>\(\widehat{EFA}=\widehat{ADB}=90^0\)

Ta có: \(\widehat{EFA}+\widehat{CFA}=\widehat{EFC}\)

=>\(\widehat{EFC}=90^0+90^0=180^0\)

=>E,F,C thẳng hàng