Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Kẻ AN là đường kính của (O)
góc ABN=1/2*180=90 độ
=>BN//CH
góc ACN=1/2*180=90 độ
=>CH//BN
=>BHCN là hình bình hành
=>M là trung điểm của HN
Xét ΔAHN có NM/NH=NO/NA
nên OM//AH và OM=AH/2
=>AH=2OM
c: ΔOKL cân tại O
mà OI là đường cao
nên I là trung điểm của KL
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔABE=ΔHBE
b: ΔBAE=ΔBHE
=>BA=BH và EA=EH
=>BE là trung trực của AH
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEK=góc HEC
=>ΔEAK=ΔEHC
=>EK=EC
=>ΔEKC cân tại E
## Bài 1:
**a) Chứng minh rằng các tam giác AMQ, ANP vuông cân.**
* **Tam giác AMQ:**
* Ta có: $\widehat{MAQ} = 90^\circ$ (do d vuông góc với AM)
* $\widehat{AMQ} = \widehat{ABM}$ (cùng phụ với $\widehat{AMB}$)
* Mà $\widehat{ABM} = 45^\circ$ (do ABCD là hình vuông)
* Nên $\widehat{AMQ} = 45^\circ$
* Vậy tam giác AMQ vuông cân tại A.
* **Tam giác ANP:**
* Ta có: $\widehat{NAP} = 90^\circ$ (do d vuông góc với AM)
* $\widehat{ANP} = \widehat{ADN}$ (cùng phụ với $\widehat{AND}$)
* Mà $\widehat{ADN} = 45^\circ$ (do ABCD là hình vuông)
* Nên $\widehat{ANP} = 45^\circ$
* Vậy tam giác ANP vuông cân tại A.
**b) Gọi giao điểm của QM và NP là R. Gọi I, K là trung điểm của đoạn thẳng MQ, PN. Chứng minh rằng AIKR là hình chữ nhật**
* **Chứng minh AIKR là hình bình hành:**
* Ta có: I là trung điểm của MQ, K là trung điểm của PN.
* Nên IK là đường trung bình của hình thang MNPQ.
* Do đó IK // MN // PQ.
* Mà AI // KR (do AI là đường trung bình của tam giác AMQ, KR là đường trung bình của tam giác ANP)
* Vậy AIKR là hình bình hành.
* **Chứng minh AIKR là hình chữ nhật:**
* Ta có: $\widehat{IAK} = 90^\circ$ (do AI // KR và $\widehat{IAK}$ là góc vuông)
* Vậy AIKR là hình chữ nhật.
**c) Chứng minh rằng bốn điểm K,B,I,D thẳng hàng**
* **Chứng minh KB // ID:**
* Ta có: KB là đường trung bình của tam giác BCP, ID là đường trung bình của tam giác DQN.
* Nên KB // CP // DQ // ID.
* Vậy KB // ID.
* **Chứng minh KB = ID:**
* Ta có: KB = 1/2 CP, ID = 1/2 DQ.
* Mà CP = DQ (do ABCD là hình vuông)
* Nên KB = ID.
* **Kết luận:**
* Do KB // ID và KB = ID nên KBID là hình bình hành.
* Mà $\widehat{KBI} = 90^\circ$ (do KB // CP và $\widehat{KBI}$ là góc vuông)
* Vậy KBID là hình chữ nhật.
* Do đó bốn điểm K,B,I,D thẳng hàng.
## Bài 2:
**a) Chứng minh rằng BF = CE; BF ⊥ CE**
* **Chứng minh BF = CE:**
* Ta có: ABDE và ACGF là hình vuông.
* Nên AB = AE, AC = AF.
* Do đó BF = BC + CF = AB + AC = AE + AF = CE.
* **Chứng minh BF ⊥ CE:**
* Ta có: $\widehat{ABF} = 90^\circ$ (do ABDE là hình vuông)
* $\widehat{ACE} = 90^\circ$ (do ACGF là hình vuông)
* Nên $\widehat{ABF} + \widehat{ACE} = 180^\circ$.
* Do đó BF ⊥ CE.
**b) Tam giác MO O1 2 là tam giác vuông cân**
* **Chứng minh MO O1 2 là tam giác vuông:**
* Ta có: O1 là tâm hình vuông ABDE, O2 là tâm hình vuông ACGF.
* Nên O1O2 là đường trung trực của đoạn thẳng BC.
* Do đó MO1 = MO2.
* Mà $\widehat{MO1O2} = 90^\circ$ (do O1O2 là đường trung trực của BC)
* Vậy tam giác MO O1 2 là tam giác vuông tại O.
* **Chứng minh MO O1 2 là tam giác cân:**
* Ta có: MO1 = MO2 (chứng minh trên)
* Vậy tam giác MO O1 2 là tam giác cân tại M.
* **Kết luận:**
* Tam giác MO O1 2 là tam giác vuông cân tại O.
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)