Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy SABC= 5/2 SABD ( vì đáy BC = 5/2 BD chung chiều cao hạ từ A xuống đáy BC)
SABC = 8 x 5/2 = 20 cm2
Đáp số : 20 cm2
Ta thấy :
SABC = 5/2 SABD ( vì đáy BC = 5/2 BD chung chiều cao hạ từ A xuống đáy BC)
SABC = 8 x 5/2 = 20 cm2
Đáp số : 20 cm2
Ta có: BM = 1/5 BC hay CM = 4/5 BC ---> S. ACM = 4/5 S.ABC = 400 cm2.
Mặt khác: AN = 3/4 AC --> S.AMN = 3/4 S.ACM = 300 cm2
Lại có: NP = 2/3 MN hay MP = 1/3 MN --> S.AMP = 1/3 S.AMN = 100 cm2.
vậy S.AMP = 100cm2
Nối B với D, C với K
xét tam giác KAD và tam giác KAC có chung chiều cao xuất phát từ K, đáy AD = 1/3 đáy AC
nên SBAD = 1/3 x SBAC
1/3 x SBAC mà SKBC = SKAC + SBAC
nên 1/3 x SKBC = 1/3 x SKAC + 1/3 x SBAC
mặt khác, SKAD + SBAD = SKBD nên SKBD = 1/3 x SKBC
ta có :SKBC = 2 x SKBE (hai tam giác chung chiều cao hạ từ KB, đáy BC = 2x đãy BE)
nên SKBD = 2/3 x SKBE
mà hai tam giác KBD và KBE có chung chiều cao hạ từ đỉnh B nên SEBD = 1/3 x SKBE hay SKBE = 3 x SEBD
Mà SEBD = 1/2 x SBDC = 1/2 x (2/3 x SABC) = 1/3 x SABC = 1/3 x 180
= 60 vậy SKBE = 3 x SEBD = 180 SABED = SABC - SDEC
= 180 - 60 = 120 Vậy SAKD = SKBE - SABED
= 180 -120 = 60 cm vuông
Lời giải:
Ta có:
\(\frac{S_{MBD}}{S_{MBA}}=\frac{BD}{BA}=\frac{BD}{BD+DA}=\frac{BD}{BD+2\times BD}=\frac{BD}{3\times BD}=\frac{1}{3}\)
\(\frac{S_{MBA}}{S_{BAC}}=\frac{BM}{BC}=\frac{1}{2}\)
\(\Rightarrow \frac{S_{MBD}}{S_{BAC}}=\frac{1}{3}\times \frac{1}{2}=\frac{1}{6}\)
\(S_{MBD}=\frac{1}{6}\times S_{ABC}=3\) (cm2)
Lại có:
\(\frac{S_{MCE}}{S_{MCA}}=\frac{EC}{AC}=\frac{3\times EA}{EA+3\times EA}=\frac{3\times EA}{4\times EA}=\frac{3}{4}\)
\(\frac{S_{MCA}}{S_{BAC}}=\frac{MC}{BC}=\frac{1}{2}\)
\(\frac{S_{MCE}}{S_{BAC}}=\frac{3}{4}\times \frac{1}{2}=\frac{3}{8}\)
\(S_{MCE}=\frac{3}{8}\times 18=6,75\) (cm2)
Như vậy: \(S_{MBD}+S_{MCE}=3+6,75=9,75\) (cm2)
Hình vẽ: