Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có BFC = 90* ( góc nội tiếp chắn nửa đường tròn )
=> AB vuông góc CF
BEC = 90* ( góc nội tiếp chắn nửa đường tròn )
=> AC vuông góc BE
Tam giác ABC có BE, CF là đường cao ( AB vuông góc CF tại F và AC vuông góc BE tại E )
Mà BE và CF cắt nhau tại H
Suy ra H là trực tâm tam giác ABC
=> AH vuông góc BC tại D
AH . AD = AE . AC
Xét tam giác AHE và ADC
AEH = ADC = 90*
góc A : góc chung
Vậy tam giác AEH đồng dạng tam giác ADC
=> \(\frac{AE}{AD}\)=\(\frac{AH}{AC}\)
=> AE . AC = AD . AH
b) Gợi ý nhé bạn
Ta chứng minh tứ giác BFHD nội tiếp
=> DFH = HBD
Mà HBD = CFE ( cùng chắn CE )
Nên DFH = CFE
=> FC là phân giác góc EFD
=> DFE = 2 CFE
Mà EOC = 2 CFE ( góc ở tâm và góc nội tiếp cùng chắn cung CE )
Suy ra DFE = EOC
=> Tứ giác EODF nội tiếp ( góc trong = góc đối ngoài )
c) Tứ giác EODF nội tiếp
=> EDF = EOF
Mà EOF = 2 ECF ( góc ở tâm và góc nội tiếp cùng chắn EF )
Nên EDF = 2 ECF
Tam giác DFL cân tại D
=> EDF = 2 FLD = 2 FLE
Mà EDF = 2 ECF (cmt)
Nên FLE = ECF
=> Tứ giác EFCL nội tiếp
Mà tam giác CEF nội tiếp (O)
=> L thuộc (O)
Tam giác BLC nội tiếp (O). Có BC là đường kính
Suy ra tg BLC vuông tại L
=> BLC = 90*
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình hơi rối, bạn tự vẽ hình nhé!
Lấy điểm S đối xứng với H qua BC, R là giao điểm của KC và MB.
Vì \(ME=MA=MH\)( tính chất trung tuyến )
Kết hợp tính đối xứng của điểm S ta có:
\(\widehat{MSB}=\widehat{BHD}=\widehat{MHE}=\widehat{MEB}\)
=> Tứ giác MESB nội tiếp
\(\Rightarrow\widehat{RBE}=\widehat{MSE}\left(1\right)\)
Lại có: \(\widehat{KSC}=\widehat{CHD}=\widehat{AHF}=\widehat{AEK}\)
Nên tứ giác KSCE cũng nội tiếp
=> \(\widehat{MSE}=\widehat{RCE}\left(2\right)\)
Từ ( 1 ) và ( 2 ) =>\(\widehat{RBE}=\widehat{RCE}\)
Nên tứ giác RBCE nội tiếp
=> \(\widehat{BRC}=\widehat{BEC}=90^o\)
Trong \(\Delta MBC\)có: \(MK\perp BC\)và \(CK\perp MB\)
Nên K là trực tâm của \(\Delta BMC\)
A B C D E F I M N P G P' H
Gọi BC,MN,AD cắt EF lần lượt tại P,P',G; AD cắt MN tại H
Ta có ngay \(\left(PDBC\right)=A\left(PDBC\right)=\left(PGFE\right)=-1\) và \(\left(P'GFE\right)=-1\)
Suy ra \(P\equiv P'\). Nói cách khác MN,EF,BC đồng quy tại P
Vì \(A\left(PDBC\right)=-1\), AD là phân giác \(\widehat{BAC}\) nên \(AD\perp AP\)
Lại do \(A\left(PHNM\right)=\left(PHNM\right)=\left(PGFE\right)=-1\) nên AH là phân giác \(\widehat{MAN}\).