Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C S N I M O K F A B D H
haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm
a, Xét tam giác ABC vuông tại A và HA = HD
- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC
- Mà BC là đường kính O
=> \(\widehat{BAC}=90^o\)
=> \(\Delta ABC\perp A\)
Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )
- Có AH là đường cao
=> OH là đường trung tuyến \(\Delta OAD\)
=> H là trug điểm AD
=> HA = HD
b, MN // SC , SC tiếp tuyến của (O)
Xét tam giác OSC có : M là trung điểm của OC
N là trung điểm của OS
=> MN là đường TB của \(\Delta OSC\)
=> MN // SC
Mà \(MN\perp OC\left(gt\right)\)
\(\Rightarrow OC\perp SC\)tại S
- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)
\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)
c, BH . HC = AF . AK
Xét \(\Delta ABC\perp A\)có :
AH là đường cao
=> AH2 = BH . HC
Xét đường tròn đường kính AH có F thuộc đường tròn
\(\Rightarrow\widehat{AFH}=90^o\)
\(\Rightarrow HF\perp AK\)tại F
Xét tam giác AHK vuông tại H , ta có :
HF là đường cao
=> AH2 = AF . AK
=> BH . HC = AF . AK ( = AH2 )
Đề bài chắc là: Vẽ hai dây AD và BC cắt nhau ở E. Lời giải như sau:
a. Do AB là đường kính nên các góc ACB, ADB vuông. Xét hai tam giác vuông ACE và BDE có \(\angle AEC=\angle BED\) (đối đỉnh), do đó \(\Delta ACE\sim\Delta BDE\) (g.g). Vậy \(\frac{AE}{BE}=\frac{CE}{DE}\to EA\cdot ED=EB\cdot EC.\)
b. Kẻ đường vuông góc \(EH\) với \(AB.\) Khi đó \(H\) thuộc đoạn thẳng \(AB.\)
Ta có \(\Delta AEH\sim\Delta ABD\left(g.g.\right)\to\frac{AE}{AB}=\frac{AH}{AD}\to AE\cdot AD=AB\cdot AH.\)
Tương tư, \(\Delta BEH\sim\Delta BAC\left(g.g\right)\to\frac{BE}{BA}=\frac{BH}{BC}\to BE\cdot BC=BA\cdot BH.\)
Cộng hai đẳng thức lại ta được, \(AE\cdot AD+BE\cdot BC=AB\cdot AH+AB\cdot BH=AB\left(AH+BH\right)=AB^2.\) Suy ra
\(AE\cdot AD+BE\cdot BC=AB^2\) không đổi. (ĐPCM)