Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
góc DCA chung
=>ΔCEB đồng dạng với ΔCDA
=>CE/CD=CB/CA
=>CE*CA=CD*CB; CE/CB=CD/CA
c: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot12=48\left(cm^2\right)\)
Xét ΔCED và ΔCBA có
CE/CB=CD/CA
góc C chung
=>ΔCED đồng dạng với ΔCBA
=>\(\dfrac{S_{CDE}}{S_{CBA}}=\left(\dfrac{DE}{AB}\right)^2=1\)
=>\(S_{CDE}=48\left(cm^2\right)\)
a: Xét ΔAFH vuông tại F và ΔADB vuông tại Dcó
góc FAH chung
Do đo: ΔAFH đồng dạng với ΔADB
b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
Do đo: ΔHFB đồng dạng với ΔHEC
Suy ra: HF/HE=HB/HC
hay \(HF\cdot HC=HB\cdot HE\)
c: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc BAE chung
Do đó: ΔBAE đồg dạg với ΔCAF
Suy ra: AE/AF=AB/AC
hay AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC