Bài 6. (1 điểm) Muốn đảm bảo an toàn cho người lao động thì...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình da xem roi rat hay cam on ban.

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy khi dùng thang, phải đặt thang cách chân tường một khoảng từ 1,03m đến 1,5 m để đảm bảo an toàn.

24 tháng 4 2017

Lời giải:

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy khi dùng thang, phải đặt thang cách chân tường một khoảng từ 1,03m đến 1,5 m để đảm bảo an toàn.

16 tháng 12 2021
a, AB là tiếp tuyến của đường tròn (O) ⇒AB vuông góc OB ⇒ΔAOB vuông tại B +, AO²=AB²+BO² (pytago) AB²=5²-3²=16 ⇒AB=4cm +, BO²=OH.OA (hệ thức lượng) ⇒OH=3²/5=1,8cm +, Sin OAB=OB/OA=3/5 ⇒Góc OAB=40°58' +, ΔODH vuông tại H ⇒OD²=OH²+DH² ⇒DH=3²-1,8²=5,76 ⇒DH=2,4 +, BD=2DH=4,8 b. Ta có OH là phân giác góc BOD (do ΔOBD cân tại O, OH là đg cao đồng thời là cân giác) mà A€OH ⇒OA là phân giác của BOC ⇒góc AOB=góc AOD +, ΔABO và ΔADO có OB=OD=R AO chung ​góc AOB=góc AOD ⇒ΔABO=ΔADO (c.g.c) ⇒Góc ABO=góc ADO=90° ⇒AD vuông góc OD ⇒AD là tiếp tuyến c. B, M, D cùng € 1 đg tròn. Đg kính BM ⇒góc BDM=90° ⇒BD vuông góc DM Mà BD vuông góc OA ⇒MD//OA d. Ta có AB=AD (t/c 2 t² cắt nhau) ND=NM (t/c 2 t² cắt nhau) mà AN=AD+DN ⇒AN=AB+MN AHDI là hcn là vô lí (hình vẽ)

Bài tập Tất cả

14 tháng 12 2021

a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm 

=> ^SAO = 900 hay tam giác SAO vuông tại A

Theo định lí Pytago tam giác SAO ta có : 

\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm 

b, Xét tam giác SAO vuông tại A, AH là đường cao 

Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm 

Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm 

c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau ) 

AO = BO = R 

Vậy SO là đường trung trực đoạn AB 

mà AH vuông SO => HB vuông SO 

=> A;H;B thẳng hàng 

14 tháng 9 2021

a, Thay x = - 1 vảo pt trên ta được : \(1-2\left(m+1\right)+m^2-3m=0\)

\(\Leftrightarrow m^2-3m-2m-2+1=0\Leftrightarrow m^2-5m-1=0\) 

\(\Delta=25-4\left(-1\right)=29>0\)

\(m_1=\frac{5-\sqrt{29}}{2};m_2=\frac{5+\sqrt{29}}{2}\)

b, Để phương trình có 2 nghiệm phân biệt : \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=m^2+2m+1-m^2+3m=5m-1>0\Leftrightarrow m>\frac{1}{5}\)

c, Để phương trình có nghiệm duy nhất khi \(5m-1=0\Leftrightarrow m=\frac{1}{5}\)