Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{2019}{1\cdot2}+\dfrac{2019}{2\cdot3}+\dfrac{2019}{3\cdot4}+...+\dfrac{2019}{2018\cdot2019}\)
\(=2019\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2018\cdot2019}\right)\)
\(=2019\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2018}-\dfrac{1}{2019}\right)\)
\(=2019\left(1-\dfrac{1}{2019}\right)\)
\(=2019\cdot\dfrac{2018}{2019}=2018\)
A=2019(1/1.2+1/2.3+1/3.4+........+1/2018.2019)
A= 2019(1-1/2+1/2-1/3+1/3-......+1/2018-1/2019)
A=2019(1-1/2019)
A=2019.2018/2019
A=2018
1).15,3-21,5-3.1,5 = -10.7
2).2(4 2-2.4,1)+1,25:5 = 0.300370048 ( cái nài mik bấm máy ra vậy nếu sai thì bảo mik nha )
A = \(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}+\dfrac{15}{56}-\dfrac{17}{72}+\dfrac{19}{90}\)
A \(=\dfrac{3}{1\cdot2}-\dfrac{5}{2\cdot3}+\dfrac{7}{3\cdot4}-\dfrac{9}{4\cdot5}+\dfrac{11}{5\cdot6}-\dfrac{13}{6\cdot7}+\dfrac{15}{7\cdot8}-\dfrac{17}{8\cdot9}+\dfrac{19}{9\cdot10}\)
A
\(=\left(1+\dfrac{1}{2}\right)+\left(\dfrac{1}{2}+\dfrac{2}{3}\right)+\left(\dfrac{1}{3}+\dfrac{3}{4}\right)+\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}\right)+\left(\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{7}+\dfrac{7}{8}\right)+\left(\dfrac{1}{8}+\dfrac{1}{9}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}\right)\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
A = \(1-\dfrac{1}{10}=\dfrac{9}{10}\)
Câu 5:
\(D\left(2\right)=21a+9b-6a-4b\)
\(D\left(2\right)=\left(21a-6a\right)+\left(9b-4b\right)\)
\(D\left(2\right)=15a+5b\)
Mà: \(3a+b=18\Rightarrow b=18-3b\)
\(\Rightarrow D\left(2\right)=15a+5\left(18-3b\right)\)
\(D\left(2\right)=15a+90-15a\)
\(D\left(2\right)=90\)
Vậy: ...
Bài 4:
\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)
Bài 5:
\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)
mik chưa học giá trị lớn nhất là max và giá trị nhỏ nhất là min nên bạn cho mik kí hiệu khác nha
M = 5 + 52 + 53 + 54 + ... + 559 + 560
5.M = 52 + 53 + 54 + 55 + ... + 560 + 561
5M - M =(52 + 53 + 54 + .... + 560 + 561) - (5 + 52 + 53 + ... + 559 + 560)
4M = 52 + 53 + 54 + .... + 560 + 561 - 5 - 52 - 53 - ...- 559 - 560
4M = (52 - 52) + (53 - 53) + ....+ (560 - 560) + (561 - 5)
4M = 561 - 5
4M + 5 = 561 - 5 + 5
4M = 561
a) 5^2018:2^2015-6^2+2017^0
=5^3-36+1
=125-36+1
=89+1=90
b)12:{390:[500-(5^3+35.7)]}
=12:{390:[500-(125+245)]}
=12:{390:[500-370]}
=12:{390:130}
=12:3=4
Hok tốt
A = \(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
=> A = \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
=> A = \(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{12}\)
=> A = \(\dfrac{1}{5}-\dfrac{1}{12}\)
=> A = \(\dfrac{7}{60}\)
Vậy A = \(\dfrac{7}{60}\)
Ta có:
A = \(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
= \(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
= \(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)
= \(\dfrac{1}{5}-\dfrac{1}{12}\) = \(\dfrac{7}{60}\)