K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

Xét ΔADF và ΔEDC có 

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=CE

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác củaADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,BC, AD. Chứng minh:a) AC là tia phân giác của DAH .b) IH = IKBài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứngminh:a) Chứng minh AB //HKb) Chứng minh KAH...
Đọc tiếp

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
 AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH 
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy

4
24 tháng 4 2020

mik ngu hình lắm xin lỗi nha

24 tháng 4 2020

ngu thì xen zô nói làm j

19 tháng 2 2020

A B C D E K I 1 2 1 2

Giả thiết\(\widehat{B_1}=\widehat{B_2};KI=IC;\widehat{A}=90^{\text{o}};AB=BE\)
Kết luận

a)  \(\Delta\)BDA =  \(\Delta\)BDE ; \(DE\perp BC\)

b)  \(\Delta\)ADK =  \(\Delta\)EDC ; KA = CE

c) B ; D ; I thẳng hàng

a) Xét : \(\Delta\)BDA và  \(\Delta\)BDE có : 

\(\hept{\begin{cases}\widehat{B_1}=\widehat{B_2}\\AB=AE\\AD\text{ chung}\end{cases}\Rightarrow\Delta ABD=\Delta BDE\left(c.g.c\right)}\)

=> \(\hept{\begin{cases}AD=DE\left(\text{cạnh tương ứng}\right)\\\widehat{BAD}=\widehat{DEB}=90^{\text{o}}\left(\text{góc tương ứng}\right)\end{cases}}\)

mà \(\widehat{BAD}=\widehat{DEB}=90^{\text{o}}\Rightarrow DE\perp BC\)

b) Xét  \(\Delta\)ADK và  \(\Delta\)EDC có : 

\(\hept{\begin{cases}\widehat{KAD}=\widehat{DEC\left(cmt\right)}\\AD=DE\left(cmt\right)\\\widehat{KDA}=\widehat{CDE}\left(\text{đối đỉnh}\right)\end{cases}}\)=>  \(\Delta\)ADK =   \(\Delta\)EDC => \(\hept{\begin{cases}AK=CE\left(\text{cạnh tương ứng}\right)\\\widehat{DKA}=\widehat{ECD}\left(\text{góc tương ứng}\right)\end{cases}}\) 

c) Lại có : AB = BE (gt) ; AK = CE (câu c)

=>AB + AK = BE + CE

=> BK =  BC

=>  \(\Delta\)BKC cân

=> \(\widehat{K}=\widehat{C}\Rightarrow\widehat{K}-\widehat{DKA}=\widehat{C}-\widehat{ECD}\Rightarrow\widehat{DKI}=\widehat{DCI}\)  =>  \(\Delta\)KCD cân => KD = DC  

Xét  \(\Delta\)KDI và  \(\Delta\)CDI có : 

\(\hept{\begin{cases}DI\text{ chung}\\KI=IC\left(\text{gt}\right)\\KD=DC\end{cases}}\)=> \(\Delta\)KDI và  \(\Delta\)CDI (c.c.c) => \(\widehat{I_1}=\widehat{I_2}\)(góc tương ứng)

mà \(\widehat{I_1}+\widehat{I_2}=180^{\text{o}}\Rightarrow\widehat{I_2}=90^{\text{o}}\Rightarrow DI\perp BC\left(1\right)\)

Xét  \(\Delta\)KBI và  \(\Delta\)CBI có :

\(\hept{\begin{cases}\widehat{B_1}=\widehat{B_2}\\BK=BC\\AI\text{ chung}\end{cases}}\) \(\Delta\)KBI và  \(\Delta\)CBI (c.g.c) => \(\widehat{I_1}=\widehat{I_2}=90^{\text{o}}\)(góc tương ứng) => \(AI\perp BC\left(2\right)\)

Từ (1) và (2) => A;D;I thẳng hàng

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:a, - 120x5y4 b, 60x6y2 c, -5x15y3Bài 2: Điền đơn thức thích hợp vào chỗ trống:a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5Bài 3: Thu gọn các đơn thức sau:a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2Bài 4: Cho tam giác ABC vuông tại A (AC>AB)....
Đọc tiếp

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:
a, - 120x5y4 b, 60x6y2 c, -5x15y3
Bài 2: Điền đơn thức thích hợp vào chỗ trống:
a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5
Bài 3: Thu gọn các đơn thức sau:
a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2
d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2
Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I là trung điểm của BC. Vẽ đường trung trực của cạnh BC cấtC tại D. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi F là giao điểm của BE và đường thẳng AI. Chứng minh :
a, CD = BE; b, Góc BEC = 2. góc BEC
c, Tam giác AEF cân d, AC=BF
Bài 5: Cho tam giác ABC có góc A bằng 90o và BD là đường phân giác. Trên BC lấy điểm E sao cho BE = BA
a, Chứng minh AD = DE và BD là đường trung trực của đoạn thẳng AE
b, Kẻ AH vuông góc với BC. Chứng minh: AE là tia phân giác của góc HAC
c, Chứng minh AD<CD
d, Gọi tia Cx là tia đối của tia CB. Tia phân giác của góc Acx cắt đường thẳng BD tại K. Tính số đo góc BAK
Bài 6: Cho tam giác abc cân tại a, đường phân giác của góc b cắt ac tại M.
Kẻ me vuông góc với bc ( e thuộc bc). đường thẳng em cắt ba tại I
a, chứng minh tam giác abm = tam giác ebm
b, chứng minh bm là đường trung trực của ae
c, so sánh am và mc
d, chứng minh tam giác BCI cân

0