Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=) 6n-1 \(⋮\)3n+2
=) [ 6n-1-(3n+2)] \(⋮\)3n+2
=) [ 6n-1-2(3n+2)] \(⋮\)3n+2
=) [ 6n-1-(6n+4)] \(⋮\)3n+2
=) 6n-1-6n-4 \(⋮\)3n+2
=) ( 6n-6n ) - ( 1 - 4 ) \(⋮\)3n+2
=) -5 \(⋮\)3n+2
=) 3n+2 \(\in\)Ư ( -5 )
rồi bạn tìm ước của 5 và tìm n
1) Ta có: 6n-1=2(3n+2)-5
Để 6n-1 chia hết cho 3n+2 thì 2(3n+2)-5 phải chia hết cho 3n+2
=> -5 phải chia hết cho 3n+2 vì 2(3n+2) chia hết cho 3n+2
Vì \(n\inℤ\Rightarrow3n+2\inℤ\Rightarrow3n+2\inƯ\left(-5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng giá trị
3n+2 | -5 | -1 | 1 | 5 |
3n | -7 | -3 | -1 | 3 |
n | \(\frac{-7}{3}\) | -1 | \(\frac{-1}{3}\) | 1 |
Đối chiếu điều kiện \(x\inℤ\)
Vậy n=\(\pm1\)
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Rightarrow\frac{1}{6}+\frac{y}{3}=\frac{5}{x}\)
\(\Rightarrow\frac{1}{6}+\frac{2y}{6}=\frac{5}{x}\)
\(\Rightarrow x\left(1+2y\right)=30\)
\(\Rightarrow x;1+2y\inƯ\left(30\right)=\left\{\pm1;\pm3;\pm5;\pm6;\pm10\pm30\right\}\)
Vì 2y là số chẵn => 1+2y là số lẻ
=> 1+2y là ước lẻ của 30
Ta có bảng:
x | -5 | -3 | -1 | 1 | 3 | 5 |
1+2y | -6 | -10 | -30 | 30 | 10 | 6 |
2y | -5 | -9 | -29 | 29 | 9 | 5 |
y | \(\frac{-5}{2}\) | \(\frac{-9}{2}\) | \(\frac{-29}{2}\) | \(\frac{29}{2}\) | \(\frac{9}{2}\) | \(\frac{5}{2}\) |
=> x;y \(\in\varnothing\)
a, 6n - 1 = 2.( 3n + 2 ) - 5
mà 2.( 3n + 2 ) \(⋮\) 3n + 2
Để 6n - 1 \(⋮\) 3n + 2
\(\Leftrightarrow\) 5 \(⋮\) 3n + 2
=> 3n + 2 \(\inƯ\left(5\right)=\left\{-1;1;5;-5\right\}\)
Ta có bảng :
3n + 2 - 1 1 5 - 5
n - 1 / 1 /
Vậy n \(\in\) { - 1 ; 1 }
a: \(\Leftrightarrow x+1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{0;-2;6;-8\right\}\)
bài 1:
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-2,-4;1,2,4}
=>n\(\in\){0,-1,-3,2,3,5}
b)<=>2(2n+1)+2 chia hết 2n+1
=>4 chia hết 2n+1
=>2n+1\(\in\){-1,-2,-4,1,2,4}
=>n\(\in\){-1;-3;-7;3;5;9}
bài 3 : <=>2y+8+xy+4x-1y-4=11
=>(8-4)+(2y-1y)+xy+4x=11
=>4+1y+x.y+x.4=11
=>1y+x.(x+y)=11-4
=>y+x.x+y=8
=>(x+y)^2=8
=>x+y=3
=>x và y là các số có tổng =3 ( bn tự liệt kê nhé )
\(a,\Leftrightarrow y\left(x+1\right)-3\left(x+1\right)=5\\ \Leftrightarrow\left(x+1\right)\left(y-3\right)=5=5.1=\left(-5\right)\left(-1\right)\\ TH_1:\left\{{}\begin{matrix}x+1=1\\y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=8\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}x+1=5\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\\ TH_3:\left\{{}\begin{matrix}x+1=-5\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\\ TH_4:\left\{{}\begin{matrix}x+1=-1\\y-3=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(0;8\right);\left(4;4\right);\left(-6;2\right);\left(-2;-2\right)\right\}\)
\(b,\Leftrightarrow6\left(n-1\right)+11⋮n-1\\ \Leftrightarrow n-1\in\left\{-11;-1;1;11\right\}\\ \Leftrightarrow n\in\left\{-10;0;2;12\right\}\)