Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên...
Đọc tiếp
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
a) \(A=\dfrac{x-5}{x}=\dfrac{x}{x}-\dfrac{5}{x}=1-\dfrac{5}{x}\left(x\ne0\right)\)
Để A nhận gt nguyên thì: \(\dfrac{5}{x}\inℤ\)
hay \(5⋮x\)
\(\Rightarrow x\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\) (TMDK)
Vậy ...
b) \(B=\dfrac{x-2}{x+1}=\dfrac{x+1}{x+1}-\dfrac{3}{x+1}=1-\dfrac{3}{x+1}\left(x\ne-1\right)\)
Để B nhận gt nguyên thì: \(\dfrac{3}{x+1}\inℤ\)
hay \(3⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\\ \Rightarrow x\in\left\{0;-2;2;-4\right\}\left(TMDK\right)\)
Vậy ...
c) \(C=\dfrac{2x-7}{x+1}=\dfrac{2\left(x+1\right)}{x+1}-\dfrac{9}{x+1}=2-\dfrac{9}{x+1}\left(x\ne-1\right)\)
Để C nhận gt nguyên thì: \(\dfrac{9}{x+1}\inℤ\)
hay \(9⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\\ \Rightarrow x\in\left\{0;-2;2;-4;8;-10\right\}\left(TMDK\right)\)
Vậy ...
d) \(D=\dfrac{5x+9}{x+3}=\dfrac{5\left(x+3\right)}{x+3}-\dfrac{6}{x+3}=5-\dfrac{6}{x+3}\left(x\ne-3\right)\)
Để D nhận gt nguyên thì: \(\dfrac{6}{x+3}\inℤ\)
hay \(6⋮\left(x+3\right)\)
\(\Rightarrow x+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\ \Rightarrow x\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\left(TMDK\right)\)
Vậy ...