K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
5 tháng 6

a) \(A=\dfrac{x-5}{x}=\dfrac{x}{x}-\dfrac{5}{x}=1-\dfrac{5}{x}\left(x\ne0\right)\)

Để A nhận gt nguyên thì: \(\dfrac{5}{x}\inℤ\)

hay \(5⋮x\)

\(\Rightarrow x\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\) (TMDK)

Vậy ...

b) \(B=\dfrac{x-2}{x+1}=\dfrac{x+1}{x+1}-\dfrac{3}{x+1}=1-\dfrac{3}{x+1}\left(x\ne-1\right)\)

Để B nhận gt nguyên thì: \(\dfrac{3}{x+1}\inℤ\)

hay \(3⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\\ \Rightarrow x\in\left\{0;-2;2;-4\right\}\left(TMDK\right)\)

Vậy ...

 

DT
5 tháng 6

c) \(C=\dfrac{2x-7}{x+1}=\dfrac{2\left(x+1\right)}{x+1}-\dfrac{9}{x+1}=2-\dfrac{9}{x+1}\left(x\ne-1\right)\)

Để C nhận gt nguyên thì: \(\dfrac{9}{x+1}\inℤ\)

hay \(9⋮\left(x+1\right)\)

\(\Rightarrow x+1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\\ \Rightarrow x\in\left\{0;-2;2;-4;8;-10\right\}\left(TMDK\right)\)

Vậy ...

d) \(D=\dfrac{5x+9}{x+3}=\dfrac{5\left(x+3\right)}{x+3}-\dfrac{6}{x+3}=5-\dfrac{6}{x+3}\left(x\ne-3\right)\)

Để D nhận gt nguyên thì: \(\dfrac{6}{x+3}\inℤ\)

hay \(6⋮\left(x+3\right)\)

\(\Rightarrow x+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\ \Rightarrow x\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\left(TMDK\right)\)

Vậy ...

14 tháng 9 2021

ta thấy rằng 5 phải chia hết cho a tức là 

a(U)5=1,-1;5,-5

vậy a 1,-1,5,-5 thì x có giá trị nguyên 

27 tháng 10 2023

a) 2ˣ + 2ˣ⁺³ = 72

2ˣ.(1 + 2³) = 72

2ˣ.9 = 72

2ˣ = 72 : 9

2ˣ = 8

2ˣ = 2³

x = 3

b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)

Ta có:

x - 2 = x + 1 - 3

Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)

⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}

⇒ x ∈ {-4; -2; 0; 2}

Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên

c) P = |2x + 7| + 2/5

Ta có:

|2x + 7| ≥ 0 với mọi x ∈ R

|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R

Vậy GTNN của P là 2/5 khi x = -7/2

6 tháng 7 2016

2.

\(\frac{3n+9}{n-4}\in Z\)

\(\Rightarrow3n+9⋮n-4\)

\(\Rightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)

\(\Rightarrow21⋮n-4\)

\(\Rightarrow n-4\inƯ\left(21\right)\)

\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)

\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)

\(B=\frac{6n+5}{2n-1}\in Z\)

\(\Rightarrow6n+5⋮2n-1\)

\(\Rightarrow6n-3+8⋮2n-1\)

\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)

\(\Rightarrow8⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(8\right)\)

\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

\(n\in Z\)

\(\Rightarrow n\in\left\{0;1\right\}\)

 

25 tháng 11 2021

giúp mình gấp với ạ

25 tháng 11 2021

\(a,\Rightarrow2x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow x\in\left\{-2;1;2;5\right\}\\ b,=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\in Z\\ \Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\\ c,\Rightarrow x^2-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x^2\in\left\{2;4;8\right\}\\ \Rightarrow x^2=4\left(x\in Z\right)\\ \Rightarrow x=\pm2\)

6 tháng 9 2019

a, \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}\Rightarrow}\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)

b. \(\left(x^2+1\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=-1\left(Voly\right)\\x=4\end{cases}\Rightarrow x=4}\)

c, \(2x^2-\frac{1}{3}x=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)

d, \(\left(\frac{4}{5}\right)^{5x}=\left(\frac{4}{5}\right)^7\)

\(\Rightarrow5x=7\)

\(\Rightarrow x=\frac{7}{5}\)

e, Ta có: \(A=\frac{x+5}{x-2}=\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)

Để A ∈ Z <=> (x - 2) ∈ Ư(7) = { ±1; ±7 }

x - 21-17-7
x319-5

 Vậy....

6 tháng 9 2019

a) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\2x-\frac{1}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=1\\2x=\frac{1}{3}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{6}\end{cases}}\)

Vậy : ....

b) \(\left(x^2+1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(loại\right)\\x=4\end{cases}}\)

c) \(2x^2-\frac{1}{3}x=0\)

\(\Leftrightarrow x\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-\frac{1}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{6}\end{cases}}\)

Vậy :...

13 tháng 12 2022

a, để A = \(\dfrac{2}{x+5}\) ϵ Z thì 2 ⋮ x + 5

x + 5  ϵ Ư(2) = { -2; -1; 1; 2)

x ϵ {  -7; -6; -4; -3}

b, để B = \(\dfrac{2x-3}{x+1}\) ϵ Z thì  2x - 3  ⋮ x + 1 ⇔ 2(x+1) - 5 ⋮ x + 1

x + 1  ϵ Ư(5) ={ -5; -1; 1; 5)

x ϵ { -6; -2; 0; 4}

 

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a, b,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0