Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-y^2=1\)
Ta có : \(\left(\frac{x}{5}\right)^2=\left(\frac{y}{4}\right)^2\)
\(=>\frac{x^2}{25}=\frac{y^2}{16}\)
A/d dãy ............
\(\frac{x^2-y^2}{25-16}=\frac{1}{9}=>\frac{x}{5}=\frac{y}{4}=\frac{1}{3}\)
\(=>\frac{x}{5}=\frac{1}{3}=>x=\frac{5}{3}\)
\(=>\frac{y}{4}=\frac{1}{3}=>x=\frac{4}{3}\)
\(\frac{x}{5}=\frac{y}{4}\)nên \(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)=> \(\frac{x}{5}=\sqrt{\frac{1}{9}};-\sqrt{\frac{1}{9}}=\frac{1}{3};\frac{-1}{3}\)
=> x = \(\frac{1}{3}.5;\frac{-1}{3}.5=\frac{5}{3};\frac{-5}{3}\)
Kho..................wa.....................troi.....................thi......................lanh.................ret.......................ai........................tich..........................ung.....................ho........................minh.....................cho....................do....................lanh
Ta có: \(\left\{{}\begin{matrix}\left(3x-\dfrac{1}{5}\right)^{200}\ge0\\\left(\dfrac{2}{5}y+\dfrac{4}{7}\right)^{1968}\ge0\end{matrix}\right.\Leftrightarrow\left(3x-\dfrac{1}{5}\right)^{200}+\left(\dfrac{2}{5}y+\dfrac{4}{7}\right)^{1968}\ge0\)
Mà \(\left(3x-\dfrac{1}{5}\right)^{200}+\left(\dfrac{2}{5}y+\dfrac{4}{7}\right)^{1968}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-\dfrac{1}{5}\right)^{200}=0\\\left(\dfrac{2}{5}y+\dfrac{4}{7}\right)^{1968}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{5}\\\dfrac{2}{5}y=\dfrac{-4}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{15}\\y=\dfrac{-10}{7}\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{15},y=\dfrac{-10}{7}\)
Bài này có mũ 200 hay 200 hay 20000 thì nó cũng chẳng ảnh hưởng gì nhé =))
Ta có : $(3x-\dfrac{1}{5})^{200})+(\dfrac{2}{5}y+\dfrac{4}{7})^1968=0$
Vì $3x-\dfrac{1}{5})^{200}\geq 0$
$\dfrac{2}{5}y+\dfrac{4}{7}^1968\geq 0$
\(=>\left\{{}\begin{matrix}\left(3x-\dfrac{1}{5}\right)^{200}=0\\\left(\dfrac{2}{5}y+\dfrac{4}{7}\right)^{1968}=0\end{matrix}\right.\)
\(=>\left\{{}\begin{matrix}\left(3x-\dfrac{1}{5}\right)=0\\\left(\dfrac{2}{5}y+\dfrac{4}{7}\right)^{ }=0\end{matrix}\right.\)
\(=>\left\{{}\begin{matrix}3x=\dfrac{1}{5}\\\dfrac{2}{5}y=\dfrac{-4}{7}\end{matrix}\right.\)
\(=>\left\{{}\begin{matrix}x=\dfrac{1}{15}\\y=\dfrac{-10}{7}\end{matrix}\right.\)