\(\Delta ABC\) có AB =10 , AC = 4 A = 600 . Tính chu vi , tanC

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2020

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=2\sqrt{19}\)

Chu vi:

\(AB+AC+BC=14+2\sqrt{19}\)

\(cosC=\frac{BC^2+AC^2-AB^2}{2BC.AC}=-\frac{\sqrt{19}}{38}\)

\(\Rightarrow sinC=\sqrt{1-cos^2C}=\frac{5\sqrt{57}}{38}\)

\(\Rightarrow tanC=\frac{sinC}{cosC}=-5\sqrt{3}\)

AH
Akai Haruma
Giáo viên
7 tháng 5 2019

Bạn xem lại PTĐT $\Delta$

NV
14 tháng 3 2020

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=3\sqrt{3}\)

\(cosB=\frac{AB^2+BC^2-AC^2}{2AB.BC}=0\Rightarrow B=90^0\)

\(\Rightarrow C=30^0\)

\(BD=\frac{1}{3}BC=\sqrt{3}\)

Đặt \(AE=x\Rightarrow\left\{{}\begin{matrix}x+BE=AB=3\\BD^2+BE^2=x^2\end{matrix}\right.\)

\(\Rightarrow3+\left(3-x\right)^2=x^2\Leftrightarrow12-6x=0\Rightarrow x=2\)

\(\Rightarrow BE=3-x=1\)

\(\Rightarrow CE=\sqrt{BE^2+BC^2}=\sqrt{1+27}=2\sqrt{7}\)

a: góc C=90-30=60 độ

Xét ΔBAC vuông tại A có cos B=AB/BC

nên \(BC=\dfrac{2\sqrt{3}}{cos30}=4\left(cm\right)\)

=>AC=2cm

b: Xét ΔbAC vuông tại A có cos B=AB/BC

nên AB/BC=1/2

=>BC=2

=>AC=căn 3

8 tháng 4 2018

\(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos A\)

\(=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos60\\ =AB^2+AC^2-2\cdot AB\cdot AC\cdot\dfrac{1}{2}\\ =AB^2+AC^2-AB\cdot AC\)