Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}=\frac{7}{8}< 1\)
Vậy B<1
Hok tốt
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{8^2}< \frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)
\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B< 1-\frac{1}{8}\)
\(\Rightarrow B< \frac{7}{8}\)
\(\Rightarrow B< \frac{8}{8}=1\)
Vậy \(B< 1\left(Đpcm\right)\)
Chúc bạn học tốt !!!
nhan xet1/2^2<1/1.2=1/1-1/2
1/3^2<1/2.3=1/2-1/3
1/4^2<1/3.4=1/3-1/4
..................................
1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/8<
1/1-1/8=8/8-1/8=7/8<1 vay B<1
B < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
B < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
B < \(1-\frac{1}{8}\)mà 1 - 1/8 < 1
=> B < 1 ( dpcm )
Vậy ...
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}< 1-\frac{1}{8}=\frac{7}{8}< 1\)
Vậy B<1
Hok tốt
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
...
\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
Cộng vế theo vế
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
Lại có \(\frac{7}{8}< 1\)
Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
Ta thấy :
\(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
...............
\(\frac{1}{8^2}<\frac{1}{7.8}\)
=> B \(=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{7}-\frac{1}{8}=1-\frac{1}{8}<1\)=> B < 1
TA CÓ B<1/1.2 +1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
=1-1/2+1/2-1/2+1/3-1/4...+1/7-1/8
=1-1/8<1
VẬY B<1
Ta thấy :
\(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
................
\(\frac{1}{8^2}<\frac{1}{7.8}\)
=>B \(<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=1-\frac{1}{8}<1\)
=> B < 1
đúng mình cái nhé
Giữ nguyên phân số 1/2^2, còn các phân số khác ta thay bằng các phân số lớn hơn, ta có:
B<1/2^2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8 = 1/4+B
Dễ dàng ta tính được:
B = 1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8 = 1/2-1/8
Do đó: B<1/4+1/2-1/8<1
B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)<\(\frac{1}{2}\)
nếu có bài chứng tỏ bạn cứ bỉu là nó đã bé hơn rùi lại còn phải chứng tỏ