Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔANC có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
b: Xét ΔAIM vuông tại I và ΔAKN vuông tại K có
AM=AN
\(\widehat{IAM}=\widehat{KAN}\)
Do đó: ΔAIN=ΔAKN
Suy ra: AI=AK
tại sao tia BI cắt Ac tại M phải là N
Mà ở đầu bài cậu nói là trên cạnh BC lấy điểm M sao cho MA=BM
Đáp án:
A) Xét ΔABD và ΔEBD có:
+) AB=BE (gt)
+) góc ABD= góc EBD (do BD là phân giác góc B)
+) BD chung
=> ΔABD = ΔEBD (c-g-c)
b)
Qua C kẻ đường thẳng vuông góc với BD tại H.
Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B
=> ΔBCF cân tại B (tính chất)
=> BC= BF (điều phải chứng minh)
c)
Xét ΔABC và ΔEBF có:
+) AB = EB (gt)
+) góc B chung
+) BC= BF (câu b)
=> ΔABC = ΔEBF (c-g-c)
d)
Từ ý a, ΔABD = ΔEBD (c-g-c)
=> góc BAD= góc BED = 90
=> DE ⊥ BC
Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D
=> D là trực tâm
=> FD ⊥ BC
=> DE trùng với FD
=> D,E,F thẳng hàng
trả lời:
AM là phân giác và BM vuông góc với AB thì không tồn tại tam giác đâu bạn
học tốt
Hình như sai đề r bạn ơi:((