Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD có AB=AD
nên ΔABD cân tại A
Ta có: ΔABD cân tại A
mà AK là đường trung tuyến
nên AK là phân giác của góc BAD
Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
=>KB=KD
a Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
b: Ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
Suy ra: KB=KD
a) Xét tam giác AMC và tam giác DMB có:
AM=MD(gt)
\(\widehat{BMD}=\widehat{AMC}\left(đối.đỉnh\right)\)
BM=MC(M là trung điểm BC)
=> ΔAMC=ΔDMB(c.g.c)
b) Ta có: \(\widehat{DBM}=\widehat{MCA}\left(\Delta AMC=\Delta DMB\right)\)
Mà 2 góc này so le trong
=> BD//AC
Xét tứ giác ABDC có:
M là trung điểm chung của AD,BC
=> ABDC là hình bình hành
Mà \(\widehat{BAC}=90^0\)
=> ABDC là hình chữ nhật
=> AD=BC
c) Xét tam giác AMK và tam giác CMK có:
MK chung
AK=KC
\(AM=MC\left(=\dfrac{1}{2}AD=\dfrac{1}{2}BC\right)\)
=> ΔAMK=ΔCMK(c.c.c)
=> \(\widehat{MKA}=\widehat{MKC}=180^0:2=90^0\Rightarrow MK\perp AC\)
Mà AC//BD(ABDC là hình chữ nhật)
\(\Rightarrow MK\perp BD\)
a) Xét tam giác AMC và tam giác DMB có:
AM=MD(gt)
ˆBMD=ˆAMC(đối.đỉnh)BMD^=AMC^(đối.đỉnh)
BM=MC(M là trung điểm BC)
=> ΔAMC=ΔDMB(c.g.c)
b) Ta có: ˆDBM=ˆMCA(ΔAMC=ΔDMB)DBM^=MCA^(ΔAMC=ΔDMB)
Mà 2 góc này so le trong
=> BD//AC
Xét tứ giác ABDC có:
M là trung điểm chung của AD,BC
=> ABDC là hình bình hành
Mà ˆBAC=900BAC^=900
=> ABDC là hình chữ nhật
=> AD=BC
c) Xét tam giác AMK và tam giác CMK có:
MK chung
AK=KC
AM=MC(=12AD=12BC)AM=MC(=12AD=12BC)
=> ΔAMK=ΔCMK(c.c.c)
=> ˆMKA=ˆMKC=1800:2=900⇒MK⊥ACMKA^=MKC^=1800:2=900⇒MK⊥AC
Mà AC//BD(ABDC là hình chữ nhật)
⇒MK⊥BD
a: Xét ΔAMB và ΔAMD có
AM chung
MB=MD
AB=AD
Do đó: ΔAMB=ΔAMD
b: ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔKBE và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKBE=ΔKDC
Suy ra: \(\widehat{BKE}=\widehat{DKC}\)
=>\(\widehat{BKE}+\widehat{BKD}=180^0\)
hay E,K,D thẳng hàng
a: Xét ΔABM và ΔADM có
AB=AD
BM=DM
AM chung
Do đó: ΔABM=ΔADM
b: ta có: ΔABM=ΔADM
=>\(\widehat{BAM}=\widehat{DAM}\)
=>\(\widehat{BAK}=\widehat{DAK}\)
Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
=>BK=DK
c: Ta có: ΔABK=ΔADK
=>\(\widehat{ABK}=\widehat{ADK}\)
Ta có: \(\widehat{ABK}+\widehat{EBK}=180^0\)(hai góc kề bù)
\(\widehat{ADK}+\widehat{CDK}=180^0\)(hai góc kề bù)
mà \(\widehat{ABK}=\widehat{ADK}\)
nên \(\widehat{EBK}=\widehat{CDK}\)
Xét ΔKEB và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKEB=ΔKDC
=>\(\widehat{BEK}=\widehat{CDK}\)
ΔKEB=ΔKDC
=>\(\widehat{BKE}=\widehat{DKC}\)
mà \(\widehat{DKC}+\widehat{BKD}=180^0\)(hai góc kề bù)
nên \(\widehat{BKE}+\widehat{BKD}=180^0\)
=>E,K,D thẳng hàng
1: Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
2: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
Suy ra: \(\widehat{ABK}=\widehat{ADK}\)
3: Xét ΔBKF và ΔDKC có
BK=DK
\(\widehat{KBF}=\widehat{KDC}\)
BF=DC
Do đó: ΔBKF=ΔDKC
(tự vẽ hình)
a+b)
_ Xét ΔABM và ΔADM có :
+AB = AD (gt)
+ AM chung
+ BM = DM (gt)
=> ΔABM = ΔADM (c-c-c)
=> \(\widehat{AMB}\) = \(\widehat{AMD}\) ( 2 góc tương ứng )
Mà 2 góc này ở vị trí kề bù
=> \(\widehat{AMB}\) = \(\widehat{AMD}\) = \(\dfrac{180}{2}\) = 90o
hay AM \(\perp\) BD (đpcm)
c) _ Vì ΔABM = ΔADM ( c/m trên )
=> \(\widehat{BAM}\) = \(\widehat{DAM}\) ( 2 góc tương ứng )
hay \(\widehat{BAK}\) = \(\widehat{DAK}\)
_ Xét ΔABK và ΔADK có :
+ AK chung
+ AB = AD (gt)
+ \(\widehat{BAK}\) = \(\widehat{DAK}\)
=> ΔABK = ΔADK ( c-g-c)
b: ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM\(\perp\)BD