Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a: Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
hay AC=BD
a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình
=> MN//AC và \(MN=\dfrac{1}{2}AC\left(1\right)\)
Xét tam giác ADC có:
P là trung điểm DC(gt)
Q là trung điểm AD(gt)
=> PQ là đường trung bình
=> PQ//AC và \(PQ=\dfrac{1}{2}AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\) Tứ giác MNPQ là hình bình hành
b) Xét tam giác ABD có:
M là trung điểm AB(gt)
Q là trung điểm AD(gt)
=> MQ là đường trung bình \(\Rightarrow MQ=\dfrac{1}{2}BD\)
CMTT: NP là đường trung bình của tam giác BDC
\(\Rightarrow NP=\dfrac{1}{2}BD\)
Ta có: \(P_{MNPQ}=MN+NP+PQ+QM=\dfrac{1}{2}AC+\dfrac{1}{2}BD+\dfrac{1}{2}AC+\dfrac{1}{2}BD=AC+BD\)
:I