K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2021

     \(5x2+5y2+8xy-2x+2y+2=0\) 

(=) \((4x^2 + 8xy + 4y^2) + (x^2 - 2x +1) + (y^2 + 2y +1) = 0 \)

(=) \(4(x+y)^2 + (x-1)^2 + (y+1)^2 = 0 \)

Ta có \(\begin{cases} 4(x+y)^2 ≥ 0 \\ (x-1)^2 ≥ 0 \\ (y+1)^2 ≥ 0 \end{cases} \)

=> \(4(x+y)^2 + (x-1)^2 + (y+1)^2 ≥ 0 \)

Vậy để \(4(x+y)^2 + (x-1)^2 + (y+1)^2 = 0 \)

(=) \(\begin{cases} 4(x+y)^2 = 0 \\ (x-1)^2 = 0 \\ (y+1)^2 = 0 \end{cases} \)

(=) \(\begin{cases} x = -y \\ x = 1 \\ y = -1 \end{cases} \)

(=) \(\begin{cases} x = 1 \\ y = -1 \end{cases} \)

Vậy \(M=(x+y)^{2015}+(x-2)^{2016}+(y+1)^{2017} M=(1-1)^{2015} + (1-2)^{2016} + (-1+1)^{2017} M=0^{2015} + (-1)^{2016} +0^{2017} M= 1 \)Vậy M = 1

 

Sửa đề: \(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(M=\left(x-y\right)^{2023}-\left(x-2\right)^{2024}+\left(y+1\right)^{2023}\)

\(=\left(1+1\right)^{2023}-\left(1-2\right)^{2024}+\left(-1+1\right)^{2023}\)

\(=2^{2023}-1\)

2 tháng 1 2023

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Vì \(\left(x+y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0\)

\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}=-1\)

3x^2+3y^2+4xy-2x+2y+2=0

=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0

=>x=1 và y=-1

M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1

6 tháng 1 2018

Ta có\(5x^2+5y^2+8xy-2x+2y+2=0\Leftrightarrow4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

<=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

mà \(\hept{\begin{cases}4\left(x+y\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}\Rightarrow}4\left(x+y\right)^2+\left(y+1\right)^2+\left(x-1\right)^2\ge0\)

dâu = xảy ra <=>\(\hept{\begin{cases}x=1\\y=1\end{cases}}\)

rồi bạn thay vào và tự tính M nhé !

^_^

26 tháng 12 2018

ban lam dung roi day

7 tháng 1 2021

2x2 + 2y2 + 3xy - x + y + 1 = 0

2x2 + 2y2 + 4xy - xy - x + y + 1 = 0

(2x2 + 2y2 + 4xy) + (-xy - x) + (y + 1) = 0

2(x + y)2 - x(y + 1) + (y + 1) = 0

2(x + y)2 + (y + 1)(1 - x) = 0

Do (x + y)2 \(\ge0\)

\(\Rightarrow\) 2(x + y)2 \(\ge0\)

\(\Rightarrow\) 2(x + y)2 + (y + 1)(1 - x) = 0 \(\Leftrightarrow\) (y + 1)(1 - x) = 0

\(\Rightarrow y+1=0;1-x=0\)

*) y + 1 = 0

y = -1

*) 1 - x = 0

x = 1

Với x = 1; y = -1, ta có:

B = [1 + (-1)]2018 + (1 - 2)2018 + (-1 - 1)2018

= 1 + 22018

NV
17 tháng 10 2019

\(\Leftrightarrow4x^2+8xy+4y^2+x^2+2x+1+y^2-2y+1=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

\(\Rightarrow M=1\)

10 tháng 12 2020

"17 tháng 10 2019 lúc 16:02"  ??

Lỗi à

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

8 tháng 10 2023

E kh hiểu lắm ạ="))