Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(3x\left(x-7\right)+2x-14=0\)
\(\Rightarrow3x\left(x-7\right)+2\left(x-7\right)=0\)
\(\Rightarrow\left(x-7\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=\frac{-2}{3}\end{cases}}\)
2, \(x^3+3x^2-\left(x+3\right)=0\)
\(\Rightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm1\end{cases}}\)
3, \(15x-5+6x^2-2x=0\)
\(\Rightarrow\left(15x-5\right)+\left(6x^2-2x\right)=0\)
\(\Rightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(5+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{-5}{2}\end{cases}}\)
4, \(5x-2-25x^2+10x=0\)
\(\Rightarrow\left(5x-25x^2\right)-\left(2-10x\right)=0\)
\(\Rightarrow5x\left(1-5x\right)-2\left(1-5x\right)=0\)
\(\Rightarrow\left(1-5x\right)\left(5x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}1-5x=0\\5x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{2}{5}\end{cases}}\)
a, \(x^3+3x^2-\left(x+3\right)=0\Leftrightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\Leftrightarrow x=1;x=-1;x=-3\)
b, \(15x-5+6x^2-2x=0\Leftrightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(3x-1\right)=0\Leftrightarrow x=-\frac{5}{2};x=\frac{1}{3}\)
c, \(5x-2-25x^2+10x=0\)
\(\Leftrightarrow\left(5x-2\right)-5x\left(5x-2\right)=0\Leftrightarrow\left(1-5x\right)\left(5x-2\right)=0\Leftrightarrow x=\frac{2}{5};x=\frac{1}{5}\)
Trả lời:
\(1,3x\left(x-7\right)+2x-14=0\)
\(\Leftrightarrow3x\left(x-7\right)+2\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-\frac{2}{3}\end{cases}}}\)
Vậy x = 7; x = - 2/3 là nghiệm của pt.
\(2,x^3+3x^2-\left(x+3\right)=0\)
\(\Leftrightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\pm1\end{cases}}}\)
Vậy x = - 3; x = 1; x = - 1 là nghiệm của pt.
\(3,15x-5+6x^2-2x=0\)
\(\Leftrightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\5+2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{5}{2}\end{cases}}}\)
Vậy x = 1/3; x = - 5/2 là nghiệm của pt.
Bài 5 :
a, \(2x\left(x-3\right)+x-3=0\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)
b, \(x\left(x+1\right)-x-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=\pm1\)
c, sửa đề \(x^3-3x^2+x-3=0\Leftrightarrow x^2\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x^2+1>0\right)\left(x-3\right)=0\Leftrightarrow x=3\)
d, \(3x^2\left(2x-1\right)+1-4x^2=0\Leftrightarrow3x^2\left(2x-1\right)+\left(1-2x\right)\left(1+2x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x^2-2x-1\right)=0\Leftrightarrow\left(2x-1\right)\left(3x+1\right)\left(x-1\right)=0\Leftrightarrow x=1;x=-\frac{1}{3};x=\frac{1}{2}\)
e, \(x^3+2x-x^2-2=0\Leftrightarrow x\left(x^2+2\right)-\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2>0\right)=0\Leftrightarrow x=1\)
a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)
\(\Leftrightarrow2x=-40\)
\(\Rightarrow x=-20\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=-12\)
\(\Rightarrow x=-3\)
c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)
\(\Leftrightarrow-14x=14\)
\(\Rightarrow x=-1\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(\Leftrightarrow17x=-34\)
\(\Rightarrow x=-2\)
e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x=24\)
\(\Rightarrow x=1\)
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x\right)+17=0\Leftrightarrow5\left(x^2-2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+17=0\)
\(\Leftrightarrow5\left(x-\frac{2}{5}\right)^2-\frac{4}{5}+17=0\Leftrightarrow5\left(x-\frac{2}{5}\right)^2+81\ge81>0\)
Vậy pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\Leftrightarrow x.2x=0\Leftrightarrow x=0\)
c, \(2x^2-9x+7=0\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\Leftrightarrow\left(x-1\right)\left(2x-7\right)=0\Leftrightarrow x=1;x=\frac{7}{2}\)
Trả lời:
a, \(5x\left(x-1\right)+\left(x+17\right)=0\)
\(\Leftrightarrow5x^2-5x+x+17=0\)
\(\Leftrightarrow5x^2-4x+17=0\)
\(\Leftrightarrow5\left(x^2-\frac{4}{5}x+\frac{17}{5}\right)=0\)
\(\Leftrightarrow x^2-\frac{4}{5}x+\frac{17}{5}=0\)
\(\Leftrightarrow x^2-2.x.\frac{2}{5}+\frac{4}{25}+\frac{81}{25}=0\)
\(\Leftrightarrow\left(x-\frac{2}{5}\right)^2+\frac{81}{25}=0\)
Vì \(\left(x-\frac{2}{5}\right)^2+\frac{81}{25}\ge\frac{81}{25}>0\forall x\)
nên pt vô nghiệm
b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)
\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\)
\(\Leftrightarrow3x.\left(-9\right).2x=0\)
\(\Leftrightarrow-54x^2=0\)
\(\Leftrightarrow x^2=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0 là nghiệm của pt.
c, \(7-9x+2x^2=0\)
\(\Leftrightarrow2x^2-7x-2x+7=0\)
\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=1\end{cases}}}\)
Vậy x = 7/2; x = 1 là nghiệm của pt.
d, trùng ý c
a)\(\left(4-x\right)^2-16=0\)
\(\Leftrightarrow\left(4-x\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=4\\4-x=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}}\)
b) \(25-\left(3-x\right)^2=0\)
\(\Leftrightarrow\left(3-x\right)^2=25\)
\(\Leftrightarrow\orbr{\begin{cases}3-x=5\\3-x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)
c)\(3x^2-6x+3-27=0\)
\(\Leftrightarrow3x^2-6x-24=0\)
\(\Leftrightarrow\left(3x+6\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+6=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}}\)
#H
1.(4-x)2-16 =0
<=> 16 -8x+x2 -16 =0
<=> -x(8-x) =0
<=> TH1: x=0
. TH2: 8-x=0
. => x= -8
2. 25 - (3-x)2 = 0
<=> 25 - (9-6x+x2) = 0
<=> 25 - 9+6x-x2 = 0
<=> -x2+6x+16 = 0
<=> -(x-8)(x+2) = 0 (bước này bạn nhập phương trình trên mtinh là nó sẽ ra nghiệm nhe)
<=> TH1:x-8=0
. x= 8
. TH2:x+2=0
. x=-2
3.(bạn tự làm nhé, giải bth thui)
Trả lời:
\(1,\left(4x-x\right)^2-16=0\)
\(\Leftrightarrow\left(3x\right)^2-16=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-4=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{4}{3}\end{cases}}}\)
Vậy x = 4/3; x = - 4/3 là nghiệm của pt.
\(2,25-\left(3-x\right)^2=0\)
\(\Leftrightarrow\left(5-3+x\right)\left(5+3-x\right)=0\)
\(\Leftrightarrow\left(2+x\right)\left(8-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2+x=0\\8-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)
Vậy x = - 2; x = 8 là nghiệm của pt.
\(3,3x^2-6x+3-27=0\)
\(\Leftrightarrow3x^2-6x-24=0\)
\(\Leftrightarrow3\left(x^2-2x-8\right)=0\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow x^2-4x+2x-8=0\)
\(\Leftrightarrow x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)
Vậy x = 4; x = - 2 là nghiệm của pt.
Lời giải :
1. \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)
\(=\frac{a^3}{8}+\frac{3a^2b}{4}+\frac{3ab^2}{2}+b^3+\frac{a^3}{8}-\frac{3a^2b}{4}+\frac{3ab^2}{2}-b^3\)
\(=\frac{a^3}{4}+3ab^2\)
Lời giải :
2. \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy...
Trả lời:
\(x^3+3x^2-\left(x+3\right)=0\)
\(\Leftrightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=\pm1\end{cases}}}\)
Vậy x = - 3; x = - 1; x = 1 là nghiệm của pt.